题意:

      给n个点,每个点必须在一个正方形上,可以在正方向上面边的中点或者是下面边的中点,正方形是和x,y轴平行的,而且所有的点的正方形的边长一样,并且正方形不能相互重叠(边相邻可以),问满足这个要求的正方形的最大边长是多少?

思路:

      点的个数最少是3,所以不存在无穷大的情况,每个点的正方形有两种选择,所以是两种中选一种,每两个点中可能存在某种选择和某种选择冲突的情况,那么好办了,是不是就是夫妻参加晚会只能去一个但是一些人之间有矛盾不能同时去的变形?直接就是2-sat,至于答案是输出最大的边长,这个好办,直接二分边长,然后每一步都是2-sat判断是否可行就ok了。


#include<stack>
#include<stdio.h>
#include<string.h> #define N_node 200 + 10
#define N_edge 100000 + 100 using namespace std; typedef struct
{
int to ,next;
}STAR; typedef struct
{
double x ,y;
}NODE; NODE node[N_node];
STAR E1[N_edge] ,E2[N_edge];
int list1[N_node] ,list2[N_node] ,tot;
int Belong[N_node] ,mark[N_node] ,CNT;
stack<int>mysk; void add(int a ,int b)
{
E1[++tot].to = b;
E1[tot].next = list1[a];
list1[a] = tot; E2[tot].to = a;
E2[tot].next = list2[b];
list2[b] = tot;
} void DFS1(int s)
{
mark[s] = 1;
for(int k = list1[s] ;k ;k = E1[k].next)
{
int to = E1[k].to;
if(!mark[to]) DFS1(to);
}
mysk.push(s);
} void DFS2(int s)
{
Belong[s] = CNT;
mark[s] = 1;
for(int k = list2[s] ;k ;k = E2[k].next)
{
int to = E2[k].to;
if(!mark[to]) DFS2(to);
}
} double minn(double x ,double y)
{
return x < y ? x : y;
} double maxx(double x ,double y)
{
return x > y ? x : y;
} bool jude(NODE a ,NODE b ,double l)
{
double s ,x ,z ,y;
s = minn(a.y + l ,b.y + l);
y = minn(a.x + l ,b.x + l);
x = maxx(a.y ,b.y);
z = maxx(a.x ,b.x);
return s > x && y > z; } bool J(int n ,int nowl)
{
int i ,j ,a1 ,a2 ,b1 ,b2;
NODE t1 ,t2;
double r = nowl * 1.0 / 2;
memset(list1 ,0 ,sizeof(list1));
memset(list2 ,0 ,sizeof(list2));
tot = 1;
for(i = 1 ;i <= n ;i ++)
for(j = i + 1 ;j <= n ;j ++)
{
a1 = i * 2 ,b1 = i * 2 + 1;
a2 = j * 2 ,b2 = j * 2 + 1; //上上
t1.x = node[i].x - r ,t1.y = node[i].y;
t2.x = node[j].x - r ,t2.y = node[j].y;
if(jude(t1 ,t2 ,nowl * 1.0)) add(a1 ,a2 ^ 1) ,add(a2 ,a1 ^ 1);
//上下
t1.x = node[i].x - r ,t1.y = node[i].y;
t2.x = node[j].x - r ,t2.y = node[j].y - r * 2;
if(jude(t1 ,t2 ,nowl * 1.0)) add(a1 ,b2 ^ 1) ,add(b2 ,a1 ^ 1);
//下上
t1.x = node[i].x - r ,t1.y = node[i].y - r * 2;
t2.x = node[j].x - r ,t2.y = node[j].y;
if(jude(t1 ,t2 ,nowl * 1.0)) add(b1 ,a2 ^ 1) ,add(a2 ,b1 ^ 1);
//下下
t1.x = node[i].x - r ,t1.y = node[i].y - r * 2;
t2.x = node[j].x - r ,t2.y = node[j].y - r * 2;
if(jude(t1 ,t2 ,nowl * 1.0)) add(b1 ,b2 ^ 1) ,add(b2 ,b1 ^ 1);
}
memset(mark ,0 ,sizeof(mark));
while(!mysk.empty()) mysk.pop();
n *= 2;
for(i = 1 ;i <= n ;i ++)
if(!mark[i]) DFS1(i);
CNT = 0;
memset(mark ,0 ,sizeof(mark));
while(!mysk.empty())
{
int xin = mysk.top();
mysk.pop();
if(mark[xin]) continue;
CNT ++;
DFS2(xin);
}
int mk = 0;
for(i = 1 ;i <= n ;i += 2)
if(Belong[i] == Belong[i^1])
{
mk = 1;
break;
}
return !mk;
} int main ()
{
int t ,n ,i ,j;
scanf("%d" ,&t);
while(t--)
{
scanf("%d" ,&n);
for(i = 1 ;i <= n ;i ++)
scanf("%lf %lf" ,&node[i].x ,&node[i].y);
int low = 0 ,up = 20000 + 100 ,mid ,ans = 0;
while(low <= up)
{
mid = (low + up) >> 1;
if(J(n ,mid)) ans = mid ,low = mid + 1;
else up = mid - 1;
}
printf("%d\n" ,ans);
}
return 0;
}

POJ2296二分2sat的更多相关文章

  1. HDU 3622 Bomb Game(二分+2SAT)

    题意:有一个游戏,有n个回合,每回合可以在指定的2个区域之一放炸弹,炸弹范围是一个圈,要求每回合的炸弹范围没有重合.得分是炸弹半径最小的值.求可以得到的最大分数. 思路:二分+2SAT. 二分炸弹范围 ...

  2. hdu 3622 二分+2-sat

    /* 二分+2-sat 题意:在一个二维平面上给你n个炸弹,和2*n个位置,每一行的两个位置只能有一个放炸弹 现在炸弹爆炸有一个半径,当炸弹爆炸时两个炸弹的半径化成的圆不能相交,求最大半径 二分半径, ...

  3. hdu1816 + POJ 2723开锁(二分+2sat)

    题意:      有m层门,我们在最外层,我们要一层一层的进,每一层上有两把锁,我们只要开启其中的一把们就会开,我们有n组钥匙,每组两把,我们只能用其中的一把,用完后第二把瞬间就会消失,问你最多能开到 ...

  4. hdu 3622 Bomb Game(二分+2-SAT)

    Bomb Game Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  5. POJ 2296 二分+2-sat

    题目大意: 给定n个点,给每个点都安排一个相同的正方形,使这个点落在正方形的下底边的中间或者上底边的中间,并让这n个正方形不出现相互覆盖,可以共享同一条边,求 这个正方形最大的边长 这里明显看出n个点 ...

  6. 【UVALive - 3211】Now or later (二分+2-SAT)

    题意: 有n架飞机需要着陆.每架飞机有两种选择,早着陆或者晚着陆,二选其一.现在为了保证飞机的着陆安全,要求两架着陆的飞机的时间间隔的最小值达到最大. 分析: 最小值最大问题我们想到二分答案.对于猜测 ...

  7. poj 2723 二分+2-sat判定

    题意:给出n对钥匙,每对钥匙只能选其中一个,在给出每层门需要的两个钥匙,只要一个钥匙就能开门,问最多能到哪层. 思路:了解了2-SAT判定的问题之后主要就是建图的问题了,这里建图就是对于2*n个钥匙, ...

  8. HDU1816(二分+2-SAT)

    Get Luffy Out * Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  9. HDU1815(二分+2-SAT)

    Building roads Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. CMU数据库(15-445)Lab3- QUERY EXECUTION

    Lab3 - QUERY EXECUTION 实验三是添加对在数据库系统中执行查询的支持.您将实现负责获取查询计划节点并执行它们的executor.您将创建执行下列操作的executor Access ...

  2. 进阶宝典一|SqlServer数据库自动备份设置

    很多人都没机会接触到数据库备份,经常操作的要么是数据库管理员,要么是项目负责人.那是不是说数据库备份就不用学了? 不,其实作为开发人员应该要了解数据备份,数据备份的手段有很多:软件备份.脚本备份.其他 ...

  3. 使用自定义注解和切面AOP实现Java程序增强

    1.注解介绍 1.1注解的本质 Oracle官方对注解的定义为: Annotations, a form of metadata, provide data about a program that ...

  4. vue离开页面销毁滚动事件

    methods:{ handleFun(){    /**销毁处理*/ } }, beforeDestroy(){ window.removeEventListener("scroll&qu ...

  5. GTID介绍

    从MySQL5.6开始增加GTID这个特性,Global Transaction ID,全局事务ID,用来强化主从数据库的一致性,故障恢复,以及容错能力,来替代传统的人工的主从复制: 有了GTID,在 ...

  6. Codeforces Round #545 B. Circus

    题面: 传送门 题目描述: 马戏团中一共有N个人(N是偶数),有的人会扮演小丑,有的人会表演杂技.给出每个人会什么,然后按照下列规则把这些人分成两组: 每个人只能在其中一组 两个组的人数相等(也就是把 ...

  7. 总结数据科学家常用的Python库

    概述 这篇文章中,我们挑选了24个用于数据科学的Python库. 这些库有着不同的数据科学功能,例如数据收集,数据清理,数据探索,建模等,接下来我们会分类介绍. 您觉得我们还应该包含哪些Python库 ...

  8. Xshell(远程)连接不上linux服务器(防火墙介绍)

    一.原因 远程(ssh)连接不上linux服务器的大多数原因都是因为本地服务器的防火墙策略导致的,因此我们想ssh远程能够连接上服务器,有两种方法: 修改防火墙策略 关闭防火墙 二.防火墙服务介绍 1 ...

  9. gsoap多wsdl集成

    gsoap常规用法: 通过wsdl文件创建头文件 //通过wsdl文件创建头文件 wsdl2h [options] -o file.h ... WSDL and XSD files or URLs t ...

  10. SetWindowsHookEx 消息钩取进程卡死

    <逆向工程核心原理> windows消息钩取部分的例子在win10下卡死,失败.通过搜索发现,要保证钩取的进程与注入的dll要保持cpu平台相同 SetWindowsHookEx可用于将d ...