Gaussion
# Kernel density estimation
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from sklearn.neighbors import KernelDensity
# Code reference: http://scikit-learn.org/stable/auto_examples/neighbors/
# plot_kde_1d.html
N = 200
np.random.seed(1)
# Create 2 normal distributed data set
norm_data_1 = np.random.normal(0, 1, int(0.3 * N))
norm_data_2 = np.random.normal(5, 1, int(0.7 * N))
norm_data = np.concatenate((norm_data_1, norm_data_2))
X_plot = np.linspace(-5, 10, 1000) # Create x axis range
# Create linear combination of 2 normal distributed random variable
norm_linear = (0.3 * norm(0, 1).pdf(X_plot) + 0.7 * norm(5, 1).pdf(X_plot))
# figure
fig, ax = plt.subplots()
# Plot the real distribution
ax.fill(X_plot, norm_linear, fc='black', alpha=0.2,
label='Linearcombination')
# Use 3 different kernels to estimate
for kernel in ['gaussian', 'tophat', 'epanechnikov']:
# Initial an object to use kernel function to fit data,
# bandwidth will affect the result
kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(norm_data.reshape(-1, 1))
# Evaluate the density model on the data
log_dens = kde.score_samples(X_plot.reshape(-1, 1))
ax.plot(X_plot, np.exp(log_dens), '-',
label="kernel ='{0}'".format(kernel))
# Add text on the plot, position argument can be arbitrary
ax.text(6, 0.38, "N={0} points".format(N))
ax.legend(loc='upper left')
# Plot the random points, squeeze them into narrow space
ax.plot(norm_data, -0.005 - 0.01 *
np.random.random(norm_data.shape[0]), '+k')
# Set x-axis y-axis limit to adjust the figure
ax.set_xlim(-4, 9)
ax.set_ylim(-0.03, 0.4)
fig.savefig('kernel_estimation.png', dpi=300)
plt.show()
二维散点图:
# Using the Box-Mueller Method to generate 2-dim normally distributed variables
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(100) # Set seed from comparability
# For mu = (0,0), covariance matrix Sigma = identity matrix
n = 500 # Number of random numbers
msize = 0.1 # determines the size of the plotted points
# a good size might be msize=5 for n=500 pts and msize=0.1 for n>50K
a = np.random.exponential(scale=1, size=n)
phi = np.random.uniform(low=0, high=2 * np.pi, size=n)
# change to cartesian coordinates
x = a * np.cos(phi)
y = a * np.sin(phi)
plt.figure(figsize=(4, 4))
plt.plot(x, y, 'ro', markersize=msize)
# for covariance matrix Sigma = A: Y = X/sqrt(Sigma) ~ N(0,I) => Y*sqrt(Sigma)
# Calculate sqrt(A) with Jordan decomposition
A = [[3, 1], [1, 1]]
A_eig = np.linalg.eig(A)
E_val = A_eig[0]
Gamma = A_eig[1]
Lambda = np.diag(E_val)
np.sqrt(Lambda)
Lambda12 = np.sqrt(Lambda)
A12 = np.dot(np.dot(Gamma, Lambda12), np.transpose(Gamma))
# Solve with matrix multiplication
c = [x, y]
tfxy = np.dot(A12, c)
# print(N)
plt.figure(2, figsize=(6, 4))
plt.plot(tfxy[0], tfxy[1], 'ro', markersize=msize)
Gaussion的更多相关文章
- GA代码中的细节
GA-BLX交叉-Gaussion变异 中的代码细节: 我写了一个GA的代码,在2005测试函数上一直不能得到与实验室其他同学类似的数量级的结果.现在参考其他同学的代码,发现至少有如下问题: 1.在交 ...
- Andrew Ng机器学习课程笔记--week7(SVM)
本周主要学习SVM 一. 内容概要 Large Margin Classification Optimization Objective(优化Objective(损失函数)) Large Margin ...
- Andrew Ng机器学习课程笔记--week9(上)(异常检测&推荐系统)
本周内容较多,故分为上下两篇文章. 一.内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian Distrib ...
- Andrew Ng机器学习课程笔记--week9(下)(推荐系统&协同过滤)
本周内容较多,故分为上下两篇文章. 本文为下篇. 一.内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian ...
- R语言进行机器学习方法及实例(一)
版权声明:本文为博主原创文章,转载请注明出处 机器学习的研究领域是发明计算机算法,把数据转变为智能行为.机器学习和数据挖掘的区别可能是机器学习侧重于执行一个已知的任务,而数据发掘是在大数据中寻找有 ...
- 重写轮子之 GaussionNB
我仿照sk-learn 中 GaussionNB 的结构, 重写了该算法的轮子,命名为 MyGaussionNB, 如下: # !/usr/bin/python # -*- coding:utf-8 ...
- Abnormal Detection(异常检测)和 Supervised Learning(有监督训练)在异常检测上的应用初探
1. 异常检测 VS 监督学习 0x1:异常检测算法和监督学习算法的对比 总结来讲: . 在异常检测中,异常点是少之又少,大部分是正常样本,异常只是相对小概率事件 . 异常点的特征表现非常不集中,即异 ...
- 神经网络训练tricks
神经网络构建好,训练不出好的效果怎么办?明明说好的拟合任意函数(一般连续)(为什么?可以参考http://neuralnetworksanddeeplearning.com/),说好的足够多的数据(h ...
- 高斯混合模型的EM算法
高斯混合模型的EM算法 混合高斯模型 高斯混合模型的概率分布可以写成多个高斯分布的线形叠加,即 \[ p(\mathbf x) = \sum_{k=1}^{K}\pi_k\mathcal N(\mat ...
随机推荐
- Spring @Order注解的使用
注解@Order或者接口Ordered的作用是定义Spring IOC容器中Bean的执行顺序的优先级,而不是定义Bean的加载顺序,Bean的加载顺序不受@Order或Ordered接口的影响: 1 ...
- linux & windows下的动态库制作
动态链接库不是linux独有的特性,在windows下面也存在这样的特性.一般来说,windows下面的动态连接库是以*.dll作为结尾的,而linux下面的动态连接库是以*.so结尾的.和静态链接 ...
- 使用javascript纯前端导出excel
前言(感谢技术的分享者) 参考博客地址 github地址 由SheetJS出品的js-xlsx是一款非常方便的只需要纯JS即可读取和导出excel的工具库,功能强大,支持格式众多,支持xls.xlsx ...
- OVN入门
参考链接 如何借助 OVN 来提高 OVS 在云计算环境中的性能 OVN简介 Open vSwitch Documentation OVSDB介绍及在OpenDaylight中的调用 OpenDayl ...
- 面试官问我MySQL索引,我
面试官:我看你简历上写了MySQL,对MySQL InnoDB引擎的索引了解吗? 候选者:嗯啊,使用索引可以加快查询速度,其实上就是将无序的数据变成有序(有序就能加快检索速度) 候选者:在InnoDB ...
- php ltrim() rtrim() trim()删除字符空格
php$str=" 去除前后空格 ";echo "方括号中为原始字符串:[".$str."]";echo "原始字符串长度:&qu ...
- JavaScript高级程序设计(读书笔记)之函数表达式
定义函数的方式有两种:一种是函数声明,另一种就是函数表达式. 函数声明的一个重要特征就是函数声明提升(function declaration hoisting),意思是在执行代码前会先读取函数声明. ...
- WebService学习总结(五)--CXF的拦截器
拦截器是Cxf的基础,Cxf中很多的功能都是由内置的拦截器来实现的,拦截器在Cxf中由Interceptor表示.拦截器的作用类似axis2中handle.Cxf的拦截器包括入拦截器和出拦截器,所有的 ...
- Apache配置与应用
目录: 一.基于域名的虚拟主机 二.基于IP地址的虚拟主机 三.基于端口的虚拟主机 四.Apache连接保持 五.构建Web虚拟目录与用户授权限制 六.Apache日志分割 七.AWStats 分析系 ...
- 抽奖之Flash大转盘
1.搭建JS与Flash互通的环境 function thisMovie(movieName){ if (window.document[movieName]) { return window.doc ...