AT2582 [ARC075D] Mirrored
首先因为这个问题的解的范围我们是不清楚的,可以先考虑一下解的范围以便后面的解题。
那么我们可以大胆猜测这个数的位数应该不会很长,否则除非使用一条与 \(D\) 有关的式子外,不论我们用什么方法都计算不出来了。
进一步观察可以发现,这个数的位数不会超过 \(D\) 的位数的两倍,证明如下(利用反证法):
若 \(N\) 加上 \(D\) 之后不会进位到前 \(|\frac{N}{2}|\) 个位置,那么显然此时 \(N\) 会构成回文串,因为 \(D > 1\) 这是不可能的。
否则,\(|\frac{N}{2}| \sim |D| + 1\) 位必然全为 \(9\),则 \(|\frac{N}{2}| + D \sim |\frac{N}{2}| + 1\) 为必然全为 \(0\),此时不会满足互为反串的要求。
那么一个最简单的思路就浮现出来了,可以考虑枚举 \(N\) 的位数然后计算在这个位数下有多少个数可以满足条件。
注意到我们只需确定后 \(|\frac{n}{2}|\) 个位置即可确定 \(N\),于是可以考虑暴力 \(dfs\) 枚举每个位置填什么然后配合一些剪枝就可以通过本题了。
但是否存在复杂度更优秀的做法呢?是存在的。
同样只考虑最后 \(|\frac{n}{2}|\) 位填什么。
可以发现暴力 \(dfs\) 是不需要的,因为之前位置对当前位置的影响仅在于是否会对当前位置产生进位。
可以考虑使用 \(dp\) 解决这个问题,根据上面的理论可以考虑令 \(f_{i, 0 / 1}\) 表示当前填到第 \(i\) 位之前对这一位是否产生进位的方案数。
但是最终我们无法通过这个状态来确定前 \(|\frac{n}{2}|\) 个数是否合法,同时因为 \(dp\) 状态没办法具体描述每个位置填了什么,因此在 \(dp\) 之后判断是否合法是不可行的。
那么就必须保证在 \(dp\) 的过程中保证每一位都必须合法。
可以发现对于第 \(p\) 位假设填为 \(i\),那么 \(n - p + 1\) 位必然填 \(j = i + D_i + lx\) 其中 \(lx\) 表示是否之前存在进位。
这一位合法的条件当且仅当 \((j + D_{n - p + 1} + rx) \% 10 = i\) (其中 \(rx\) 表示之后是否会进位到 \(n - p + 1\)),且满足之前一位是否需要进位的需求。
于是此时判定的方法就呼之欲出了,只需要在 \(dp\) 的时候多记一维令 \(f_{i, 0 / 1, 0 / 1}\) 表示当前考虑到第 \(i\) 位之前是否会对第 \(i\) 位产生进位,第 \(n - i + 1\) 位是否需要之后产生进位。
转移的时候只需要考虑这一位填什么然后把不合法的情况判掉即可,使用记忆化搜索实现。
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define rep(i, l, r) for (int i = l; i <= r; ++i)
const int N = 20 + 5;
int n, d, ans, a[N], dp[N][2][2];
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int calc(int x) { int ans = 0; for (; x; x /= 10, ++ans) a[ans + 1] = x % 10; return ans;}
int dfs(int p, int lx, int rx, int L) {
if(p > (L + 1) / 2) return !(lx ^ rx);
if(dp[p][lx][rx] != -1) return dp[p][lx][rx];
int ans = 0;
rep(i, 0, 9) {
int j = (i + lx + a[p]) % 10;
if(p == 1 && !j) continue ;
if((L & 1) && (p == (L + 1) / 2)) {
if(i != j) continue;
ans += dfs(p + 1, i + lx + a[p] > 9, rx, L);
}
else {
if(!rx && j + a[L - p + 1] > 9) continue ;
if(rx && j + a[L - p + 1] < 9) continue ;
if(rx && j + a[L - p + 1] == 9 && i) continue ;
if((j + a[L - p + 1]) % 10 != i && (j + a[L - p + 1] + 1) % 10 != i) continue ;
if(!rx && j + a[L - p + 1] + 1 > 9 && (j + a[L - p + 1]) % 10 != i) continue ;
ans += dfs(p + 1, i + lx + a[p] > 9, (j + a[L - p + 1]) % 10 != i, L);
}
}
return dp[p][lx][rx] = ans;
}
signed main() {
d = read(), n = calc(d);
rep(i, n, 2 * n) memset(dp, -1, sizeof(dp)), ans += dfs(1, 0, 0, i);
printf("%lld", ans);
return 0;
}
AT2582 [ARC075D] Mirrored的更多相关文章
- AT2582 Mirrored
传送门 智障爆搜题 可以发现题目给出的式子可以移项 然后就是\(rev(N)-N=D\) 然后假设\(N=a_1*10^{n-1}+a_2*10^{n-2}+...+a_{n}\) 那么\(rev(N ...
- 最长回文子串(Mirrored String II)
Note: this is a harder version of Mirrored string I. The gorillas have recently discovered that the ...
- [AtCoderContest075F]Mirrored
[AtCoderContest075F]Mirrored 试题描述 For a positive integer \(n\), we denote the integer obtained by re ...
- Consistent 与 Mirrored 视角
Consistent 与 Mirrored 视角 在进行分布式训练时,OneFlow 框架提供了两种角度看待数据与模型的关系,被称作 consistent 视角与 mirrored 视角. 本文将介绍 ...
- CentOS RabbitMQ 高可用(Mirrored)
原文:https://www.sunjianhua.cn/archives/centos-rabbitmq.html 一.RabbitMQ 单节点 1.1.Windows 版安装配置 1.1.1 安装 ...
- 【arc075F】Mirrored
Portal --> arc075_f Solution 一开始抱着"我有信仰爆搜就可以过"的心态写了一个爆搜.. 但是因为..剪枝和枚举方式不够优秀愉快T掉了q ...
- 【ARC075F】Mirrored 搜索/数位dp
Description 给定正整数DD,求有多少个正整数NN,满足rev(N)=N+Drev(N)=N+D,其中rev(N)rev(N)表示将NN的十进制表示翻转来读得到的数 Input 一个 ...
- ARC075 F.Mirrored
题目大意:给定D,询问有多少个数,它的翻转减去它本身等于D 题解做法很无脑,利用的是2^(L/2)的dfs,妥妥超时 于是找到了一种神奇的做法. #include <iostream> u ...
- Atcoder F - Mirrored(思维+搜索)
题目链接:http://arc075.contest.atcoder.jp/tasks/arc075_d 题意:求rev(N)=N+D的个数,rev表示取反.例如rev(123)=321 题解:具体看 ...
随机推荐
- matplotlib 高阶之Transformations Tutorial
目录 Data coordinates Axes coordinates Blended transformations 混合坐标系统 plotting in physical units 使用off ...
- Java实习生常规技术面试题每日十题Java基础(七)
目录 1. Java设计模式有哪些? 2.GC是什么?为什么要有GC? 3. Java中是如何支持正则表达式. 4.比较一下Java和JavaSciprt. 5.Math.round(11.5) 等于 ...
- Java,JDK安装及环境配置
jdk安装及环境配置 一.jdk安装 1.找到jdk安装包 2.安装jdk 3.安装jre 二.环境变量配置 1.JAVA_HOME JAVA_HOME C:\Program Fil ...
- VMware客户端vSphereClient新建虚拟机
1.说明 VMware客户端工具vSphere Client, 用来连接和管理ESX或ESXi主机(下面称为宿主机), 可以方便的创建.管理虚拟机,并分配相应的资源.宿主机就是使用虚拟化软件运行虚拟机 ...
- .net core中Grpc使用报错:The remote certificate is invalid according to the validation procedure.
因为Grpc采用HTTP/2作为通信协议,默认采用LTS/SSL加密方式传输,比如使用.net core启动一个服务端(被调用方)时: public static IHostBuilder Creat ...
- HttpRunner_参数化进阶
一.获取返回包数据 在提取参数时,当 HTTP 的请求响应结果为 JSON 格式,则可以采用.运算符的方式,逐级往下获取到参数值:响应结果的整体内容引用方式为 content 或者 body,如上 ...
- SpringBoot学习笔记一之本地环境基础搭建
原文链接: https://www.toutiao.com/i6802935050196222471/ 工程创建 Maven创建工程 搜索maven找到project的创建 创建simple proj ...
- python驱动SAP完成数据导出(一)
写在前面 我们使用Python驱动SAP时,经常会需要导出一些SAP报表数据至本地Excel文件.这个看似简单的问题背后,其实暗藏玄机,今天小爬就带各位同学好好捋捋. 以事务代码FB03(凭证清单)为 ...
- IDEA maven 项目修改代码不生效,mvn clean、install 后才生效
Maven项目进行修改代码后我们重新运行代码,查看我们target目录下的class文件是否发生了变化. 如何查看class文件,鼠标移到项目,点击右键,然后点击 show in Explore ...
- Java中生成一个唯一值的方式
现总结几种生成一个唯一值的方式 第一种:采用nanoTime() // 理论上存在重复的可能,可以在后面再加上一个随机字符串 Random r = new Random(); for (int i = ...