题解 \(by\;zj\varphi\)

一道凸包的题

设 \(\rm dep_u\) 表示节点 \(u\) 的深度,那么原式就可化为 \(-\frac{c_v-c_u}{dep_v-dep_u}\) 这个式子可以维护一个下凸包

但是递归弹栈的话会被卡成 \(n^2\),所以我们可以写一个可持久化栈,或者是倍增跳栈

对于一个新加入的节点,我们对比它和不同祖先的斜率,如果有一个祖先 \(fa\),\(\rm slope(x,fa)\le slope(x,fa[fa])\),那么就说明,我们要把 \(fa\) 这里的栈跳掉

Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef double db;
static const int N=5e5+7;
int dep[N],c[N],first[N],fa[N][20],ch[N],n,t=1;
struct edge{int v,nxt;}e[N];
inline void add(int u,int v) {e[t].v=v,e[t].nxt=first[u],first[u]=t++;}
inline db calc(int x,int y) {return (1.0*(c[y]-c[x]))/(1.0*(dep[x]-dep[y]));}
void dfs(int x) {
ri ft=fa[x][0];
for (ri i(19);~i;--i) {
if (fa[ft][i]<=1) continue;
if (calc(x,fa[fa[ft][i]][0])<=calc(x,fa[ft][i])) ft=fa[fa[ft][i]][0];
}
if (ft>1&&calc(x,fa[ft][0])<=calc(x,ft)) ft=fa[ft][0];
ch[x]=fa[x][0]=ft;
for (ri i(1);i<=19;p(i)) fa[x][i]=fa[fa[x][i-1]][i-1];
for (ri i(first[x]),v;i;i=e[i].nxt) dep[v=e[i].v]=dep[x]+1,dfs(v);
}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n);
for (ri i(1);i<=n;p(i)) read(c[i]);
for (ri i(2),u;i<=n;p(i)) read(u),add(fa[i][0]=u,i);
dfs(1);
for (ri i(2);i<=n;p(i)) printf("%.10lf\n",calc(i,ch[i]));
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 $16\; \rm Lost My Music$的更多相关文章

  1. NOIP 模拟 $16\; \rm God Knows$

    题解 \(by\;zj\varphi\) 对于这道题,不难想到可以用 \(dp\),就是求一个最小权极长上升子序列 设 \(dp_i\) 表示最后一个选 \(i\) 时,覆盖前 \(i\) 条边的最小 ...

  2. NOIP 模拟 $16\; \rm Star Way To Heaven$

    题解 \(by\;zj\varphi\) 看懂题!!! 从最左穿到最右,一定会经过两个星星之间或星星和边界之间,那么我们穿过时当前最优一定是走中点 而我们要求最小的距离最大,那么我们将所有星星和边界( ...

  3. NOIP模拟 1

    NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. #   用  户  名   ...

  4. 2021.5.22 noip模拟1

    这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...

  5. NOIP 模拟 $22\; \rm f$

    题解 \(by\;zj\varphi\) 对于一个数,如果它二进制下第 \(i\) 位为 \(1\),那么 \(\rm x\) 在这一位选 \(1\) 的贡献就是和它不同的最高为为 \(i\) 的数的 ...

  6. NOIP模拟

    1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...

  7. NOIP模拟3

    期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...

  8. 7.22 NOIP模拟7

    又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...

  9. 20190725 NOIP模拟8

    今天起来就是虚的一批,然后7.15开始考试,整个前半个小时异常的困,然后一看题,T1一眼就看出了是KMP,但是完了,自己KMP的打法忘的一干二净,然后开始打T2,T2肝了一个tarjan点双就扔上去了 ...

随机推荐

  1. Acunetix临时扫描是不够的

    Web漏洞扫描程序通常被视为即席工具.最初,所有漏洞扫描程序都是这种工具,并且当前的开源Web应用程序安全解决方案仍遵循该模型.但是,随着Web技术的复杂性和可用性的大幅增加,临时模型已经过时,无法满 ...

  2. ESP32省电模式连接WIFI笔记

    基于ESP-IDF4.1版本 main.c文件如下: #include <string.h> #include "freertos/FreeRTOS.h" #inclu ...

  3. c语言格式字符

    格式说明由"%"和格式字符组成,如%d%f等.它的作用是将输出的数据转换为指定的格式输出.格式说明总是由"%"字符开始的. 格式字符有d,o,x,u,c,s,f ...

  4. DIY一个智能开关kwswitch

    源码地址:https://gitee.com/kerwincui/kwswitch 平台简介 该智能开关平台包括服务端.硬件端.PC端和安卓端.硬件使用ESP8266模块,成本相对较低,可以发挥想象力 ...

  5. Tomcat和Servlet简析

    目录 Servlet Tomcat 参考 Servlet Servlet通常指我们继承了Servlet接口的类,我们开发Servlet时一般就是继承HttpServlet重写它的doGet.doPos ...

  6. Codeforces Round#704 Div2 题解(A,B,C,D,E)

    FST ROUND !!1 A Three swimmers: 直接整除一下向上取整就好了: #include <bits/stdc++.h> using namespace std; t ...

  7. C语言:带参数的宏与函数的区别

    带参数的宏和函数很相似,但有本质上的区别:宏展开仅仅是字符串的替换,不会对表达式进行计算:宏在编译之前就被处理掉了,它没有机会参与编译,也不会占用内存.而函数是一段可以重复使用的代码,会被编译,会给它 ...

  8. printf函数返回值

    //返回值:正确返回输出的字符总数,错误返回负值,与此同时,输入输出流错误标志将被置值,可由指示器ferror来检查输入输出流的错误标志. #include <stdio.h> #defi ...

  9. Python基础之函数的闭包与装饰器的介绍

    1.闭包的概念: 如果在一个函数中,定义了另外一个函数,并且那个函数使用了外面函数的变量,并且外面那个函数返回了里面这个函数的引用,那么称为里面的这个函数为闭包. 2.话不多说,以demo示例: de ...

  10. Winform框架中窗体基类的用户身份信息的缓存和提取

    在Winform开发中,有时候为了方便,需要把窗体的一些常规性的数据和操作函数进行封装,通过自定义基类窗体的方式,可以实现这些封装管理,让我们的框架统一化.简单化的处理一些常规性的操作,如这里介绍的用 ...