枚举每个置换,求在每个置换下着色不变的方法数,先求出每个循环的大小,再动态规划求得使用给定的颜色时对应的方法数。

dp[i][j][k]表示处理到当前圈时R,B,G使用量为i,j,k时的方法数,背包思想。

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<utility>
using namespace std;
typedef long long LL;
const int N = 68, INF = 0x3F3F3F3F;
#define MS(a, num) memset(a, num, sizeof(a))
#define PB(A) push_back(A)
#define FOR(i, n) for(int i = 0; i < n; i++)
int r, g, b, m, p, n;
int dis[N][N];
bool vis[N];
LL dp[N][N][N]; LL Ext_gcd(LL a,LL b,LL &x,LL &y){//扩展欧几里得
if(b==0) { x=1, y=0; return a; }
LL ret= Ext_gcd(b,a%b,y,x);
y-= a/b*x;
return ret;
}
LL Inv(LL a,int m){ ///求逆元
LL d,x,y,t= (LL)m;
d= Ext_gcd(a,t,x,y);
if(d==1) return (x%t+t)%t;
return -1;
} LL solve(){
LL ans = 0;
for(int x = 0; x < m; x++){
memset(vis, 0, sizeof(vis));
vector<int> v;
for(int i = 1; i <= n; i++){
if(!vis[i]){
int cnt = 0;
int tp = i;
while(!vis[tp]){
cnt++;
vis[tp] = 1;
tp = dis[x][tp];
}
v.push_back(cnt);
}
}
memset(dp, 0, sizeof(dp));
dp[0][0][0] = 1;
for(int t = 0; t < v.size(); t++){
for(int i = r; i >= 0; i--){
for(int j = b; j >= 0; j--){
for(int k = g; k >= 0; k--){
if(i == 0 && j == 0 && k == 0){
continue;
}
dp[i][j][k] = 0;
if(i >= v[t]){
dp[i][j][k] = (dp[i][j][k] + dp[i - v[t]][j][k]) % p;
}
if(j >= v[t]){
dp[i][j][k] = (dp[i][j][k] + dp[i][j - v[t]][k]) % p;
}
if(k >= v[t]){
dp[i][j][k] = (dp[i][j][k] + dp[i][j][k - v[t]]) % p;
}
}
}
}
}
ans = (ans + dp[r][b][g]) % p;
}
ans = ans * Inv(m, p) % p;
return ans;
}
int main(){
while(~scanf("%d %d %d %d %d", &r, &b, &g, &m, &p)){
n = r + b + g;
bool f = 1;
for(int i = 0; i < m; i++){
int cnt = 0;
for(int j = 1; j <= n; j++){
scanf("%d", &dis[i][j]);
if(dis[i][j] == j){
cnt++;
}
}
if(cnt == n){
f = 0;
}
}
if(f){
for(int i = 1; i <= n; i++){
dis[m][i] = i;
}
m++;
}
printf("%lld\n", solve());
}
return 0;
}

  

BZOJ1004 [HNOI2008]Cards(Polya计数)的更多相关文章

  1. [BZOJ1004] [HNOI2008] Cards (Polya定理)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  2. BZOJ1004[HNOI2008]Cards——polya定理+背包

    题目描述 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色 ...

  3. bzoj1004 [HNOI2008]Cards 置换群+背包

    [bzoj1004][HNOI2008]Cards 2014年5月26日5,3502 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿 ...

  4. bzoj1004 [HNOI2008]Cards【Burnside/Polya】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 一道好题,但并不是好在融合了三个“考点”(计数,背包dp,逆元),其实背包dp以及求逆 ...

  5. [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  6. BZOJ1004 [HNOI2008]Cards 【burnside定理 + 01背包】

    题目链接 BZOJ1004 题解 burnside定理 在\(m\)个置换下本质不同的染色方案数,等于每种置换下不变的方案数的平均数 记\(L\)为本质不同的染色方案数,\(m\)为置换数,\(f(i ...

  7. BZOJ1004 HNOI2008 Cards Burnside、背包

    传送门 在没做这道题之前天真的我以为\(Polya\)可以完全替代\(Burnside\) 考虑\(Burnside\)引理,它要求的是对于置换群中的每一种置换的不动点的数量. 既然是不动点,那么对于 ...

  8. bzoj1004: [HNOI2008]Cards(burnside引理+DP)

    题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...

  9. [BZOJ1004][HNOI2008]Cards 群论+置换群+DP

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 首先贴几个群论相关定义和引理. 群:G是一个集合,*是定义在这个集合上的一个运算. ...

随机推荐

  1. bootstrap框架-----可见 隐藏

    可见框架-像素选择 -block-inline  :块内联元素 -inline-block将对象呈递为内联对象,但是对象的内容作为块对象呈递.旁边的内联对象会被呈递在同一行内,允许空格 可以设置宽度和 ...

  2. symfony2 环境搭建笔记

    本机环境:windows+xampp symfony下载:官网下载 环境配置: 1.下载后将symfony文件夹解压到xampp/htdocs中(最好改一下文件夹名,尽量小写) 2.Symfony2自 ...

  3. 求教Sublime Text2 SublimeLinter插件安装问题

    昨天装了 SublimeLinter插件(代码语法检测),这个事插件的地址:https://github.com/Kronuz/SublimeLinter 按照作者的介绍配置了一下,发现语法检测不起作 ...

  4. selenium源码分析-webdriver(二)

    最近比较空闲就仔细看了一下Selenium的源码,因为主要是使用WebDriver所以重点关注了一下WebDriver的工作原理.在前一篇blog里已经解释过了WebDriver与之前Selenium ...

  5. php调用c/c++的一种方式

    php调用c/c++有很多方式,最常用的是通过tcp或者http去调用,通过发送请求去调用c/c++编写的cgi/fastcgi来实现,另外php还有一种直接执行外部应用程序的方式,这种方式会影响到系 ...

  6. Java for LintCode 链表插入排序

    用插入排序对链表排序 解题思路: 最省时间的方法是使用优先级队列,但是无法通过,那就直接插入排序好了. public ListNode insertionSortList(ListNode head) ...

  7. 常见kill信号

    字符名 数字名 组合键ctrl+ 备注 SIGTERM 15   kill的默认值,可以杀死后台进程 SIGKILL 9   不可忽略,必杀技 SIGTSTP 20 Z 前台组全暂停(只是组合键方式吧 ...

  8. Mathematics:GCD & LCM Inverse(POJ 2429)

    根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...

  9. codeforces 556B. Case of Fake Numbers 解题报告

    题目链接:http://codeforces.com/problemset/problem/556/B 题目意思:给出 n 个齿轮,每个齿轮有 n 个 teeth,逆时针排列,编号为0 ~ n-1.每 ...

  10. Android studio 自定义打包APK名称

    Android Studio打包应用默认生成的apk名称是:app-release.apk .如果我们要让生成的apk名跟我们版本包名有联系的话,那我们就要自定义生成的apk名了,要怎么做呢. 我们只 ...