权限题,没有传送门。

这很显然是一道DP题,刚看完题目可能会比较懵逼。这道题如果不要求回去,那么就是一道很裸的DP题。但是本题要求回去而且回去的格子的前一个格必须是之前经过的。

先不考虑回去的路程,对于一段长度在$K$之内的区间,其中的所有值为正数的点都是可以到达的。所以先搞个前缀和:

$sum_i= \sum _{j=1}^i a_j \times [a_j>0]$

这个搞完后如果不算回来的,可以得到以下转移方程:

$f[i]=max \{ f[j]+sum[i-1]-sum[j] \}$

其实到这一步,带上回去的状态转移方程也很显然了。

$f[i]=max \{f[j]+sum[i-2]-sum[j]+a[i]+a[i-1] \}$

表示第$i$个点为去时经过的点且会返回的前一个点,$sum[]$和$f[]$均存在单调性,所以可以用单调队列优化决策单调性,使得总体复杂度降为$O(N)$。

但是$f[i]_{max}$并不是最后的答案,因为对于任意一个点$i$,$[i+1,i-1+K]$都是可以到达的,所以要把这一段对答案的贡献也累加上。

在具体实现时,注意单调队列在DP前应进队0和1,因为第0个点不是必须停留的点。

//BZOJ 1915
//by Cydiater
//2016.10.6
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <map>
#include <iomanip>
#include <cstdlib>
using namespace std;
#define ll long long
#define up(i,j,n)        for(int i=j;i<=n;i++)
#define down(i,j,n)        for(int i=j;i>=n;i--)
const int MAXN=3e6+5;
const int oo=0x3f3f3f3f;
inline ll read(){
    char ch=getchar();ll x=0,f=1;
    while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
ll N,K,sum[MAXN],a[MAXN],q[MAXN],head,tail,f[MAXN],ans=0;
namespace solution{
    void init(){
        memset(sum,0,sizeof(sum));
        N=read();K=read();
        up(i,1,N)a[i]=read();
        up(i,1,N)sum[i]=sum[i-1]+(a[i]>0?a[i]:0);
    }
    void DP(){
        head=1;tail=0;q[++tail]=0;q[++tail]=1;
        up(i,2,N){
            while(head<tail&&i-q[head]>K)head++;
            f[i]=f[q[head]]+sum[i-2]-sum[q[head]]+a[i]+a[i-1];
            while(head<tail&&f[i]-f[q[tail]]>sum[i]-sum[q[tail]])tail--;
            q[++tail]=i;
        }
        up(i,1,N)ans=max(ans,f[i]+((i-1+K<=N)?(sum[i-1+K]-sum[i]):(sum[N]-sum[i])));
    }
    void output(){
        cout<<ans<<endl;
    }
}
int main(){
    //freopen("input.in","r",stdin);
    using namespace solution;
    init();
    DP();
    output();
    return 0;
}

BZOJ1915: [Usaco2010 Open]奶牛的跳格子游戏的更多相关文章

  1. 【BZOJ1915】[Usaco2010 Open]奶牛的跳格子游戏 DP+单调队列

    [BZOJ1915][Usaco2010 Open]奶牛的跳格子游戏 Description 奶牛们正在回味童年,玩一个类似跳格子的游戏,在这个游戏里,奶牛们在草地上画了一行N个格子,(3 <= ...

  2. BZOJ_1915_[Usaco2010 Open]奶牛的跳格子游戏_DP+单调队列

    BZOJ_1915_[Usaco2010 Open]奶牛的跳格子游戏_DP+单调队列 Description 奶牛们正在回味童年,玩一个类似跳格子的游戏,在这个游戏里,奶牛们在草地上画了一行N个格子, ...

  3. 2018.10.14 bzoj1915: 奶牛的跳格子游戏(单调队列优化dp)

    传送门 NOIP练习题. f[i]f[i]f[i]表示去的时候选了iii且回来的时候第一步走的是i−1i-1i−1的最优值. 显然f[i]=maxf[i]=maxf[i]=max{f[j]−sum[j ...

  4. BZOJ1666: [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏

    1666: [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5 ...

  5. bzoj:1666: [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏

    Description 奶牛们又在玩一种无聊的数字游戏.输得很郁闷的贝茜想请你写个程序来帮她在开局时预测结果.在游戏的开始,每头牛都会得到一个数N(1<=N<=1,000,000).此时奶 ...

  6. 【BZOJ】1666: [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏(刷水严重)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1666 这种我就不说了.. #include <cstdio> #include < ...

  7. 1861 奶牛的数字游戏 2006年USACO

    codevs——1861 奶牛的数字游戏 2006年USACO  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 青铜 Bronze 题解       题目描述 Descript ...

  8. BZOJ2097[Usaco2010 Dec] 奶牛健美操

    我猜我这样继续做水题会狗带 和模拟赛的题很像,贪心搞一下. #include<bits/stdc++.h> using namespace std; int read(){ ,f=;cha ...

  9. 【BZOJ】1666 [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏

    [算法]贪心&&堆 [题解]反过来看就是合并任意两块木板,花费为木板长度之和. 显然从最小的两块开始合并即可,用堆(优先队列)维护. 经典DP问题石子归并是只能合并相邻两堆石子,所以不 ...

随机推荐

  1. Java程序-进程中的"进程"

    进程 我们知道程序在磁盘上的时候是静态的,当他被加载到内存的时候,就变成了一个动态的,称为进程,如下图是程序被加载到内存后,在内存中的分布情况如下      此图来自http://blog.csdn. ...

  2. 浅析WPhone、Android的Back与Home键

    浅析WPhone.Android的Back与Home键 背景 本人一直在用诺基亚手机(目前是Nokia 925,Windows Phonre 8.1),在界面设计.应用多样性等方面没少受身边Andro ...

  3. 20160220 - JavaScript for OS X Automation 调试技巧

    在JXA代码中加入如下代码后,可使用 Safari Web Inspector 调试: //debugger; 使用 Safari Web Inspector 查看 Array 或 Object 并不 ...

  4. 无线AP和无线路由器区别

    无线AP,即Access Point,也就是无线接入点.简单来说就是wifi共享上网中的无线交换机,它是移动终端用户进入有线网络的接入点. AD:51CTO技术沙龙 | 赋予APP不同凡响的交互和体验 ...

  5. Beta--项目冲刺第六天

    胜利在望-- 队伍:F4 成员:031302301 毕容甲 031302302 蔡逸轩 031302430 肖阳 031302418 黄彦宁 会议内容: 1.站立式会议照片: 2.项目燃尽图 3.冲刺 ...

  6. IOS中取乱序数据最大值、最小值方法

    2016-01-12 / 23:15:58 第一种方法也是常规方法,就是设定一个默认值作为最大值,循环取比这个最大值还大的值并赋值给默认最大值,这样循环完成后这个默认最大值变量里面的值就是最大值了: ...

  7. hibernate用setResultTransformer转换

    当你用hibernate查出数据,但是类型不是原来的类型怎么办,新增的实体类还可以用,query.setResultTransformer(Transformers.aliasToBean(AA.cl ...

  8. Kernel Methods - An conclusion

    Kernel Methods理论的几个要点: 隐藏的特征映射函数\(\Phi\) 核函数\(\kappa\): 条件: 对称, 正半定; 合法的每个kernel function都能找到对应的\(\P ...

  9. MVVM: 通过 Binding 或 x:Bind 结合 Command 实现,通过非 ButtonBase 触发命令

    介绍背水一战 Windows 10 之 MVVM(Model-View-ViewModel) 通过 Binding 或 x:Bind 结合 Command 实现,通过非 ButtonBase 触发命令 ...

  10. 【HDU 5855】Less Time, More profit(网络流、最小割、最大权闭合子图)

    Less Time, More profit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/O ...