【BZOJ-3238】差异 后缀数组 + 单调栈
3238: [Ahoi2013]差异
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 1561 Solved: 734
[Submit][Status][Discuss]
Description
Input
一行,一个字符串S
Output
一行,一个整数,表示所求值
Sample Input
Sample Output
HINT
2<=N<=500000,S由小写英文字母组成
Source
Solution
后缀数组+单调栈
LCP的话,预处理ST表,然后直接求?似乎不好,不过后缀数组的话很好想
肯定是对height做文章...总后缀的长度和很好求..随便一算就出来了...考虑LCP的问题
想法是枚举i,对于每个height[i]前后扩展,找出对答案的贡献,然后最后计算答案..似乎可以,但是WA掉了..
原因是有重复计算,那么要不重复..上述是左右两边扩展,使得区间[l,r]中height[i]为最小,重复的很多,思想还是一样的不过不妨把区间看成[l,r)(PS,其实表述不准确),这样的扩展下去,即向左有限制,向右无限制,向左扩展到相等的就停止,向右遇到相等的可以继续.
那么需要用单调栈去维护扩展的过程..这样就能得到每一个height[i]对答案的贡献了,最后答案需要减掉(i-L[i]+1)*(R[i]-i+1)*(height[i])
注意:
在计算答案的过程中要强制转换.(旧错不再犯)
处理后的单调栈内如果为空,说明可以扩展到开头/结尾(也是看别人的才反应过来的)
PS:正解好像不是这个?...不过POJ上好像做过类似的题,所以写起来还是比较快的..
Code
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 500010
char S[maxn]; int SA[maxn],len;
int ws[maxn],wv[maxn],wa[maxn],wb[maxn];
int cmp(int *r,int a,int b,int l)
{
return r[a]==r[b]&&r[a+l]==r[b+l];
}
void DA(char *r,int *sa,int n,int m)
{
int p,*x=wa,*y=wb,*t;
for (int i=; i<m; i++) ws[i]=;
for (int i=; i<n; i++) ws[x[i]=r[i]]++;
for (int i=; i<m; i++) ws[i]+=ws[i-];
for (int i=n-; i>=; i--) sa[--ws[x[i]]]=i;
p=; for (int j=; p<n; j*=,m=p)
{
p=; for (int i=n-j; i<n; i++) y[p++]=i;
for (int i=; i<n; i++) if (sa[i]>=j) y[p++]=sa[i]-j;
for (int i=; i<n; i++) wv[i]=x[y[i]];
for (int i=; i<m; i++) ws[i]=;
for (int i=; i<n; i++) ws[wv[i]]++;
for (int i=; i<m; i++) ws[i]+=ws[i-];
for (int i=n-; i>=; i--) sa[--ws[wv[i]]]=y[i];
t=x; x=y; y=t; p=; x[sa[]]=;
for (int i=; i<n; i++)
x[sa[i]]=cmp(y,sa[i-],sa[i],j)?p-:p++;
}
}
int rank[maxn],height[maxn];
void calheight(char *r,int *sa,int n)
{
int k=;
for (int i=; i<=n; i++) rank[sa[i]]=i;
for (int i=; i<n; height[rank[i++]]=k)
{k?k--:;for (int j=sa[rank[i]-]; r[i+k]==r[j+k]; k++);}
}
int stack[maxn],top,L[maxn],R[maxn];
long long tot,lcp;
int main()
{
scanf("%s",S); len=strlen(S); S[len]=;
DA(S,SA,len+,); calheight(S,SA,len);
tot=(long long)((long long)len*(long long)(len-)*(long long)(len+)/);
top=; stack[]=;
for (int i=; i<=len; i++)
{
while (top && height[stack[top-]]>height[i]) top--;
if (top) L[i]=stack[top-]+;
else L[i]=;
stack[top++]=i;
}
top=; stack[]=len;
for (int i=len; i>=; i--)
{
while (top && height[stack[top-]]>=height[i]) top--;
if (top) R[i]=stack[top-]-;
else R[i]=len;
stack[top++]=i;
}
for (int i=; i<=len; i++)
lcp+=(long long)*(long long)(i-L[i]+)*(long long)(R[i]-i+)*(long long)height[i];
printf("%lld\n",tot-lcp);
return ;
}
【BZOJ-3238】差异 后缀数组 + 单调栈的更多相关文章
- BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2326 Solved: 1054[Submit][Status ...
- 【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈
[BZOJ3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
- [AHOI2013] 差异 - 后缀数组,单调栈
[AHOI2013] 差异 Description 求 \(\sum {len(T_i) + len(T_j) - 2 lcp(T_i,T_j)}\) 的值 其中 \(T_i (i = 1,2,... ...
- bzoj3238 [Ahoi2013]差异 后缀数组+单调栈
[bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
- BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈
BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...
- BZOJ.4199.[NOI2015]品酒大会(后缀数组 单调栈)
BZOJ 洛谷 后缀自动机做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 显然只需要考虑极长的相同子串的贡献,然后求后缀和/后缀\(\max\)就可以了. 对于相同子串,我们能想 ...
- BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】
题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...
- 【BZOJ3879】SvT 后缀数组+单调栈
[BZOJ3879]SvT Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干 ...
- BZOJ_3879_SvT_后缀数组+单调栈
BZOJ_3879_SvT_后缀数组+单调栈 Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个 ...
随机推荐
- 手写PHP AJAX数据脚本
<script type="text/javascript"> var xmlrequest = ""; function getXMLreques ...
- Caffe学习系列(22):caffe图形化操作工具digits运行实例
上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...
- 20145222GDB调试汇编堆栈过程分析
GDB调试汇编堆栈过程分析 实践代码example.c #include<stdio.h> short addend1 = 1; static int addend2 = 2; const ...
- lecture16-联合模型、分层坐标系、超参数优化及本课未来的探讨
这是HInton的第16课,也是最后一课. 一.学习一个图像和标题的联合模型 在这部分,会介绍一些最近的在学习标题和描述图片的特征向量的联合模型上面的工作.在之前的lecture中,介绍了如何从图像中 ...
- 从大公司做.NET 开发跳槽后来到小公司的做.NET移动端微信开发的个人感慨
从14年11月的实习到正式的工作的工作我在上一家公司工作一年多了.然而到16年5月20跳槽后自己已经好久都没有在写博客了,在加上回学校毕业答辩3天以及拿档案中途耽搁了几天的时间,跳槽后虽然每天都在不停 ...
- C#基础之IEnumerable
1.IEnumerable的作用 在使用Linq查询数据时经常以IEnumerable<T>来作为数据查询返回对象,在使用foreach进行遍历时需要该对象实现IEnumerable接口, ...
- Qt中forward declaration of struct Ui::xxx的解决
每当你新键一个 QT设计界面, QT会自动生成yyy.ui文件,如 <?xml version="1.0" encoding="UTF-8"?> & ...
- jquery 选择器大全
jquery 选择器大体上可分为4 类: 1.基本选择器 2.层次选择器 3.过滤选择器 4.表单选择器 其中过滤选择器可以分为: 1.简单过滤选择器 2.内容过滤选择器 3.可见性过滤选择器 4.属 ...
- angular一些冷门的用法
1.controller的第三个参数
- HDU5892~HDU5901 2016网络赛沈阳
A.题意: 有一个n×n的格子, 有50种怪物. 有m个操作, 每次操作会往一个矩形区域放怪物, 每个格子放相同数目的怪物, 或者查询当前50种怪物的奇偶性. 分析:用2^50表示怪物的奇偶,然后就是 ...