Codeforces Fix a Tree
Fix a Tree
time limit per test2 seconds
A tree is an undirected connected graph without cycles.
Let's consider a rooted undirected tree with n vertices, numbered 1 through n. There are many ways to represent such a tree. One way is to create an array with n integers p1, p2, ..., pn, where pi denotes a parent of vertex i (here, for convenience a root is considered its own parent).
For this rooted tree the array p is [2, 3, 3, 2].
Given a sequence p1, p2, ..., pn, one is able to restore a tree:
There must be exactly one index r that pr = r. A vertex r is a root of the tree.
For all other n - 1 vertices i, there is an edge between vertex i and vertex pi.
A sequence p1, p2, ..., pn is called valid if the described procedure generates some (any) rooted tree. For example, for n = 3 sequences (1,2,2), (2,3,1) and (2,1,3) are not valid.
You are given a sequence a1, a2, ..., an, not necessarily valid. Your task is to change the minimum number of elements, in order to get a valid sequence. Print the minimum number of changes and an example of a valid sequence after that number of changes. If there are many valid sequences achievable in the minimum number of changes, print any of them.
Input
The first line of the input contains an integer n (2 ≤ n ≤ 200 000) — the number of vertices in the tree.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n).
Output
In the first line print the minimum number of elements to change, in order to get a valid sequence.
In the second line, print any valid sequence possible to get from (a1, a2, ..., an) in the minimum number of changes. If there are many such sequences, any of them will be accepted.
Examples
input
4
2 3 3 4
output
1
2 3 4 4
input
5
3 2 2 5 3
output
0
3 2 2 5 3
input
8
2 3 5 4 1 6 6 7
output
2
2 3 7 8 1 6 6 7
Note
In the first sample, it's enough to change one element. In the provided output, a sequence represents a tree rooted in a vertex 4 (because p4 = 4), which you can see on the left drawing below. One of other correct solutions would be a sequence 2 3 3 2, representing a tree rooted in vertex 3 (right drawing below). On both drawings, roots are painted red.
In the second sample, the given sequence is already valid.
大概意思是:
给出 n 个结点的父亲,问至少修改多少个结点的父亲,能使整张图变成
一棵树(根的父亲为自己),要求输出任一方案。
其中 1 ≤ n ≤ 200000。
我的想法是你先按最小生成树的方法生成树,然后找一个点为根节点,有现成的就用,没有就选一个。
然后把每棵树都连起来就成了一棵新的树了。。。
写完以后很开心的发现1A了。。然后去看了看题解。。。
别人的方法是:
思考环和链的答案
图的各个弱连通块是环 + 内向树,或者树/环。
先用拓扑排序把内向树消掉
剩下来的是一些环,每个环随便选一个结点当根,然后再把所有的根连
在一起。
答案是环数-(是否存在自环)
其实我也没怎么看懂,我觉得道理应该差不多吧
```c++
include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 5;
int n, root, tot, fa[maxn], ini[maxn];
bool flag[maxn];
set s;
set::iterator iter;
inline int read()
{
int s = 0, w = 1; char ch = getchar();
while(ch <= '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();
return s * w;
}
int find(int t){return t == fa[t] ? t : fa[t] = find(fa[t]);}
int main()
{
n = read();
for(int i = 1; i <= n; ++i) ini[i] = read(), fa[i] = i;
for(int A, B, i = 1; i <= n; ++i){
A = find(i); B = find(ini[i]); if(A == B) continue;
fa[A] = B; flag[i] = true;
}
for(int i = 1; i <= n; ++i){s.insert(find(fa[i])); if(i == ini[i]) root = i;}
for(iter = s.begin(); iter != s.end(); ++iter) tot++;
if(!root){
for(int i = 1; i <= n; ++i){
if(flag[i]) continue;
root = i; tot++; flag[i] = true; ini[i] = i; break;
}
}
printf("%d\n", tot - 1);
for(int i = 1; i <= n; ++i){
if(flag[i]) printf("%d ", ini[i]);
else printf("%d ", root);
}
return 0;
}
Codeforces Fix a Tree的更多相关文章
- Problem - D - Codeforces Fix a Tree
Problem - D - Codeforces Fix a Tree 看完第一名的代码,顿然醒悟... 我可以把所有单独的点全部当成线,那么只有线和环. 如果全是线的话,直接线的条数-1,便是操作 ...
- Codeforces Round #363 (Div. 2) D. Fix a Tree —— 并查集
题目链接:http://codeforces.com/contest/699/problem/D D. Fix a Tree time limit per test 2 seconds memory ...
- Codeforces Round #363 (Div. 2) 698B Fix a Tree
D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes A tree is an und ...
- Codeforces Round #363 (Div. 2)D. Fix a Tree(并查集)
D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- Fix a Tree
Fix a Tree A tree is an undirected connected graph without cycles. Let's consider a rooted undirecte ...
- Codeforces 699D Fix a Tree 并查集
原题:http://codeforces.com/contest/699/problem/D 题目中所描述的从属关系,可以看作是一个一个块,可以用并查集来维护这个森林.这些从属关系中会有两种环,第一种 ...
- 【并查集】【模拟】Codeforces 698B & 699D Fix a Tree
题目链接: http://codeforces.com/problemset/problem/698/B http://codeforces.com/problemset/problem/699/D ...
- 【codeforces 698B】 Fix a Tree
题目链接: http://codeforces.com/problemset/problem/698/B 题解: 还是比较简单的.因为每个节点只有一个父亲,可以直接建反图,保证出现的环中只有一条路径. ...
- Codeforces Round #363 (Div. 1) B. Fix a Tree 树的拆环
题目链接:http://codeforces.com/problemset/problem/698/B题意:告诉你n个节点当前的父节点,修改最少的点的父节点使之变成一棵有根树.思路:拆环.题解:htt ...
随机推荐
- rpmbuild - 构建 RPM 打包
SYNOPSIS 构建打包: rpmbuild {-ba|-bb|-bp|-bc|-bi|-bl|-bs} [rpmbuild-options] SPECFILE ... rpmbuild {-ta| ...
- Python3.5-20190526-廖老师-自我笔记-单元测试-参数换-paramunittest
参数化: import timeimport list1 #想测试list1中的求和函数是否正确fun1import paramunittestimport unittest #先设置参数组@para ...
- python写txt文件
with open('data.txt','w') as f: #设置文件对象 w是重新写,原来的会被抹掉,a+是在原来的基础上写 str0=u"写文件\n" #写中文要在字符串签 ...
- Spring---条件注解@Conditional
1.概述 1.1.Spring4 提供了一个更通用的 基于条件的Bean的创建,即使用@Conditional注解: 1.2.案例 package com.an.config; import co ...
- springmvc的@ModelAttribute
1:作用:执行任何方法前都要先执行一下有这个标识的方法. 用途:表单回显的时候先从数据库中查询出来放到这个方法中. 1):模拟表单 <form action="first/testMo ...
- 「树的直径」BFS方法证明
选定任意一个点u,从u开始BFS求出距离u最大的点s,再从s点出发BFS到距离s最大的点t,则dis(s,t)即为树的直径 证明 其实只要找到了树的直径的一个端点,再BFS找到最远点就一定是直径的另一 ...
- k-近邻算法(kNN)测试算法:作为完整程序验证分类器
#测试算法:作为完整程序验证分类器 def datingClassTest(): hoRatio = 0.10 #设置测试集比重,前10%作为测试集,后90%作为训练集 datingDataMat,d ...
- signer information does not match signer information of other classes in the same package
报错日志: java.lang.SecurityException: class "org.bouncycastle.asn1.ASN1ObjectIdentifier"'s si ...
- linux系统下jdk安装配置
1.有jdk包(linux版) 2.放到linux系统下 3.建议在usr下新建jdk目录之后将jdk文件放到该目录下 3.配置系统信息 /etc/profile 需要配置的信息如下:#set j ...
- BZOJ 3294: [Cqoi2011]放棋子(计数dp)
传送门 解题思路 设\(f[i][j][k]\)表示前\(k\)个颜色的棋子占领了\(i\)行\(j\)列的方案数,那么转移时可以枚举上一个颜色时占领的位置,\(f[i][j][k]=\sum\lim ...