A.入阵曲

部分分很肥,正解写得常数稍大就会和暴力一个分,考试的时候写什么自己考虑。(滑稽

部分分的循环边界手抖写错了-25 (原本暴力分中的10分都没了啊啊啊)

没写挂的话应该有75,其实就是二维前缀和+暴力枚举点对统计+$a[i][j]$都相等时只枚举子矩形大小再乘上这种大小出现的次数。

正解:$(sum[r]-sum[l-1])\% K=0 \rightarrow sum[r]\% K=sum[l-1]\% K$

枚举行数$i,j$和列数$k$,维护i行和j行之间、k列左侧在%K意义下同余矩阵的个数,用桶来实现。

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=;
int n,m;
ll K,ans;
int a[N][N];
ll sum[N][N],sum1[N],cnt[];
int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch))x=x*+ch-'',ch=getchar();
return x*f;
} int main()
{
n=read();m=read();K=1LL*read();
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
a[i][j]=read();
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
sum[i][j]=sum[i-][j]+sum[i][j-]-sum[i-][j-]+1LL*a[i][j];
for(int i=;i<n;i++)
for(int j=i+;j<=n;j++)
{
cnt[]=;
for(int k=;k<=m;k++)
{
sum1[k]=(sum[j][k]-sum[i][k]+K)%K;
ans+=cnt[sum1[k]];
cnt[sum1[k]]++;
}
for(int k=;k<=m;k++)cnt[sum1[k]]=;
}
cout<<ans<<endl;
return ;
}

B.将军令

我考场都能想到的sb贪心。每次取出深度最大且未被覆盖的点,在它的K级祖先上驻扎即可。前者用堆维护,后者直接暴力修改覆盖状态,注意向上修改时不要只遍历和它在一条链上的。

正确性?读者自证不难。(逃

#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#define pa pair<int,int>
#define re register
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch))x=x*+ch-'',ch=getchar();
return x*f;
}
const int N=;
int n,K,t;
int to[N<<],nxt[N<<],head[N],tot;
inline void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
int dep[N],fa[N];
priority_queue<pa> q;
void dfs1(int x,int deep)
{
dep[x]=deep;
for(re int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(!dep[y])dfs1(y,deep+),fa[y]=x;
}
return ;
}
int cover[N],anc,ans;
void getan(int x,int rest)
{
if(!rest||x==)
{
anc=x;
return ;
}
getan(fa[x],rest-);
return ;
}
void dfs2(int x,int rest,int f)
{
cover[x]=;
if(!rest)return ;
for(re int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(y==f)continue;
dfs2(y,rest-,x);
}
return ;
} int main()
{
n=read();K=read();t=read();
for(re int i=;i<n;i++)
{
int x=read(),y=read();
add(x,y);add(y,x);
}
dfs1(,);
for(re int i=;i<=n;i++)
q.push(make_pair(dep[i],i));
while(!q.empty())
{
int x=q.top().second;
q.pop();
if(cover[x])continue;
getan(x,K);
//cout<<anc<<endl;
dfs2(anc,K,-);
ans++;
}
cout<<ans<<endl;
return ;
}

C.星空

区间状态反转可以看作区间异或1,但区间操作不好处理,考虑通过差分转化为单点操作。即把对原数组上$[L,R]$区间的操作转化为差分数组上$L-1$和$R$两个点的操作。这里用到了异或差分:$dif[i]=a[i]\ xor\ a[i+1]$

所以问题变成了:有一个01串,每次对其中两个点$xor\ 1$,需要多少次把这个串的每一位都变成0。(差分数组全0对应原数组全1)

可以发现,消去两个1的费用与他们之间的距离有关。bfs预处理出来后,问题再次得到转化:每次取出一对物品,每对物品取出都有一定代价,如何取出使得代价最小。由于不亮的灯泡很少,这个问题完全可以状压解决。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch))x=x*+ch-'',ch=getchar();
return x*f;
}
const int N=;
int n,m,K;
int a[N],op[N],dif[N];
int pos[N],sz;
int vis[N],dis[][],d[N];
int find0[N<<],dp[N<<];
void bfs(int node)
{
memset(d,,sizeof(d));
memset(vis,,sizeof(vis));
queue<int> q;
q.push(node);
vis[node]=;d[node]=;
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=;i<=m;i++)
{
int s1=x+op[i],s2=x-op[i];
if(s1<=n&&!vis[s1])
{
q.push(s1);
d[s1]=d[x]+;
vis[s1]=;
}
if(s2>=&&!vis[s2])
{
q.push(s2);
d[s2]=d[x]+;
vis[s2]=;
}
}
}
} int main()
{
n=read();K=read();m=read();
for(int i=;i<=K;i++)
a[read()]=;
for(int i=;i<=m;i++)
op[i]=read();
for(int i=;i<=n;i++)
{
dif[i]=a[i]^a[i+];
if(dif[i])pos[++sz]=i;
}
for(int i=;i<=sz;i++)
{
bfs(pos[i]);
for(int j=;j<=sz;j++)
dis[i][j]=d[pos[j]];
}
for(int s=;s<(<<sz);s++)
{
find0[s]=sz-;
for(int i=;i<sz;i++)
if(((s>>i)&)==)
{
find0[s]=i;
break;
}
}
memset(dp,0x3f,sizeof(dp));
dp[]=;
for(int s=;s<(<<sz);s++)
for(int i=find0[s]+;i<sz;i++)
{
if(((s>>i)&)==&&dis[find0[s]+][i+])
{
int now=(s|(<<find0[s])|(<<i));
dp[now]=min(dp[now],dp[s]+dis[find0[s]+][i+]);
//cout<<dp[now]<<endl;
}
}
cout<<dp[(<<sz)-]<<endl;
return ;
}

[NOIP]模拟17 题解的更多相关文章

  1. NOIP模拟17.9.21

    NOIP模拟17.9.21 3 58 145 201 161.5 样例输出21.6 数据规模及约定对于40% 的数据,N <= 20对于60% 的数据,N <= 1000对于100% 的数 ...

  2. NOIP模拟17.9.22

    NOIP模拟17.9.22 前进![问题描述]数轴的原点上有一只青蛙.青蛙要跳到数轴上≥

  3. NOIP模拟 17.8.20

    NOIP模拟17.8.20 A.阶乘[题目描述]亲爱的xyx同学正在研究数学与阶乘的关系,但是他喜欢颓废,于是他就制作了一个和阶乘有关系的数学游戏:给出两个整数 n,m,令 t = !n,每轮游戏的流 ...

  4. NOIP模拟 17.8.18

    NOIP模拟17.8.18 A.小菜一碟的背包[题目描述]Blice和阿强巴是好朋友但萌萌哒Blice不擅长数学,所以阿强巴给了她一些奶牛做练习阿强巴有 n头奶牛,每头奶牛每天可以产一定量的奶,同时也 ...

  5. NOIP模拟 17.8.15

    NOIP模拟17.8.15 A 债务文件名 输入文件 输出文件 时间限制 空间限制debt.pas/c/cpp debt.in debt.out 1s 128MB[题目描述]小 G 有一群好朋友,他们 ...

  6. NOIP模拟 17.8.17

    NOIP模拟17.8.17 A 小 G 的字符串文件名 输入文件 输出文件 时间限制 空间限制str.pas/c/cpp str.in str.out 1s 128MB[题目描述]有一天,小 L 给小 ...

  7. NOIP模拟 17.8.16

    NOIP模拟17.8.16 A 债务文件名 输入文件 输出文件 时间限制 空间限制debt.pas/c/cpp debt.in debt.out 1s 128MB[题目描述]小 G 有一群好朋友,他们 ...

  8. NOIP模拟 17.8.14

    NOIP模拟17.8.14 (天宇哥哥考察细心程度的题) [样例解释]如果删去第一个 1:在[3,1,2]中有 3 个不同的数如果删去 3:在[1,1,2]中有 2 个不同的数如果删去第二个 1:在[ ...

  9. 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程

    数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...

随机推荐

  1. 服务安全-OAuth-OAuth2.0:百科

    ylbtech-服务安全-OAuth-OAuth2.0:百科 OAuth2.0是OAuth协议的延续版本,但不向后兼容OAuth 2.0即完全废止了OAuth1.0. OAuth 2.0关注客户端开发 ...

  2. SQLserver服务无法启动

    今天调整了一下sqlserver tcp/ip 网络协议,重启生效时,SQLserver服务无法启动. 搞了一天都没发现问题,准备重装,发现也比较麻烦.看了日志,网上查了一堆解决方案,均没有. 后台发 ...

  3. 20. Cookie 和 Session

    之前我们在Cookie 和Session是什么?已经说过Cookie 和Session,但是为了保证系列的完整性,我们决定重新说一遍,当然可能会有一些区别,建议先从Cookie 和Session是什么 ...

  4. J. The Volcano Eruption(圆相交+并查集)

    题目链接:https://codeforces.com/gym/101915/problem/J 思路:将所有相交的圆用并查集维护看做一个整体,然后枚举每个整体的左边界和右边界,判断能不能同时覆盖整个 ...

  5. The Preliminary Contest for ICPC Asia Shenyang 2019 H

    H. Texas hold'em Poker 思路:根据每个牌型分等级,然后排序按照等级优先,最大值次之,次大值,最后比较剩下值的和. #include<bits/stdc++.h> us ...

  6. shell 字符串匹配变量(只取数字或者取固定字符串)

    var1=abc3559   #想要获得3559 操作: var1_key=`echo $var1 | tr -cd "[0-9]"` https://www.cnblogs.co ...

  7. Rust <1>:数据类型、变量、可变性、常量、隐藏

    rust 是强类型语言,所有变量.常量都必须有明确的数据类型:很多情况下,省略类型声明,编译器可自动推导,但不是所有情况下都会成功. rust 有整型.浮点型.布尔型.字符型.数组.元组.枚举.结构体 ...

  8. java 并发——CountDownLatch

    java 并发--CountDownLatch 简介 public class CountDownLatch { private final Sync sync; private static fin ...

  9. 论一个PHP项目上线的注意点

    一.后端问题 服务器配置要跟上流量 预估QPS时要给足未知流量的空间 后端数据库设计要根据项目大小来相对应,小型流量单表就可以,但是中大型要分库分表 在处理执行修改的操作时一定要多一层判断(判断是否已 ...

  10. 8种常见SQL错误用法,你中招了吗?

    作者:db匠 来源:https://yq.aliyun.com/articles/72501 1.LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如对于下面简单的语句, ...