1、导包

import numpy as np
import operator
from os import listdir
from sklearn.neighbors import KNeighborsClassifier as KNN %config ZMQInteractiveShell.ast_node_interactivity='all'

2、定义将图像转换成向量的函数

"""
函数说明:将32x32的二进制图像转换成1x1024向量 Parameters:
filename - 文件名
Returns:
returnVect - 返回的二进制图像的1x1024向量
"""
def img2vector(filename):
# 创建1x1024零向量
returnVect = np.zeros((1, 1024))
# 打开文件
fr = open(filename)
# 按行读取
for i in range(32):
# 读一行数据
lineStr = fr.readline()
# 每一行的前32个元素一次添加到returnVect中
for j in range(32):
returnVect[0, 32*i + j] = int(lineStr[j])
# 返回转换后的1x1024向量
return returnVect

3、定义手写数字识别系统函数

"""
函数说明:手写数字分类测试 Parameters:

Returns:

"""
def handwritingClassTest():
# 训练集的Labels
hwLabels = []
# 返回trainingDigits目录下的文件名
trainingFileList = listdir('trainingDigits')
# 返回文件夹下的文件的个数
m = len(trainingFileList)
# 初始化训练的Mat矩阵,训练集
trainingMat = np.zeros((m, 1024))
# 从文件集中解析出训练集的类别
for i in range(m):
# 获得文件的名字
fileNameStr = trainingFileList[i]
# 获得分类的数字
classNumber = int(fileNameStr.split('_')[0])
# 将获得的类别添加到hwLabels中
hwLabels.append(classNumber)
# 将每一个文件的1x1024数据存储到trainingMat矩阵中
trainingMat[i, :] = img2vector('trainingDigits/%s' % (fileNameStr))
# 构建KNN分类器
neigh = KNN(n_neighbors=3, algorithm='auto')
# 拟合模型,trainingMat为训练矩阵,hwLabels为对应的标签
neigh.fit(trainingMat, hwLabels)
# 返回testDigits目录下的文件列表
testFileList = listdir('testDigits')
# 错误检查计数
errorCount = 0.0
# 测试数据的数量
mTest = len(testFileList)
# 从文件中解析出测试集的类别并进行分类测试
for i in range(mTest):
# 获得文件的名字
fileNameStr = testFileList[i]
# 获得分类的数字
classNumber = int(fileNameStr.split('_')[0])
# 获得测试集的1x1024向量,用于训练
vectorUnderTest = img2vector('testDigits/%s' % (fileNameStr))
# 获得预测结果
classifierResult = neigh.predict(vectorUnderTest)
# 打印
print('分类返回结果为%d\t真实结果为%d' % (classifierResult, classNumber))
if(classifierResult != classNumber):
errorCount += 1.0
print('总共错了%d个数据\n错误率为%f%%' %(errorCount, errorCount/mTest * 100))

4 运行结果

if __name__ == "__main__":
handwritingClassTest()

数据集地址:

链接:https://pan.baidu.com/s/1yNi3TJhYtlBr2MFR8rCkaw
提取码:9epj

参考:

1、《机器学习实战》书籍

2、https://github.com/apachecn/AiLearning

3、https://cuijiahua.com/blog/2017/11/ml_1_knn.html

4、深度之眼机器学习实战训练营课后作业(http://www.deepshare.net/

K近邻实战手写数字识别的更多相关文章

  1. 深度学习之PyTorch实战(3)——实战手写数字识别

    上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...

  2. Tensorflow实战 手写数字识别(Tensorboard可视化)

    一.前言 为了更好的理解Neural Network,本文使用Tensorflow实现一个最简单的神经网络,然后使用MNIST数据集进行测试.同时使用Tensorboard对训练过程进行可视化,算是打 ...

  3. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  4. 用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别

    用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学 ...

  5. kaggle 实战 (1): PCA + KNN 手写数字识别

    文章目录 加载package read data PCA 降维探索 选择50维度, 拆分数据为训练集,测试机 KNN PCA降维和K值筛选 分析k & 维度 vs 精度 预测 生成提交文件 本 ...

  6. 机器学习(二)-kNN手写数字识别

    一.kNN算法是机器学习的入门算法,其中不涉及训练,主要思想是计算待测点和参照点的距离,选取距离较近的参照点的类别作为待测点的的类别. 1,距离可以是欧式距离,夹角余弦距离等等. 2,k值不能选择太大 ...

  7. keras和tensorflow搭建DNN、CNN、RNN手写数字识别

    MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...

  8. OpenCV+TensorFlow图片手写数字识别(附源码)

    初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这 ...

  9. 深度学习面试题12:LeNet(手写数字识别)

    目录 神经网络的卷积.池化.拉伸 LeNet网络结构 LeNet在MNIST数据集上应用 参考资料 LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务.自那时起 ...

随机推荐

  1. Apache 配置外网站点

    基于域名,一般是对外网站 www.etiantian.org/var/www/html/www blog.etiantian.org /var/www/html/blog bbs.tiantian.o ...

  2. github配置及使用

    安装git 对于linux系统,不同发行版本的安装方法不一样,请参考https://git-scm.com/download/linux.以ubuntu为例: sudo add-apt-reposit ...

  3. Codeforces 957 水位标记思维题

    A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...

  4. python 获取系统环境变量 os.environ and os.putenv

    从一段code说起 “if "BATCH_CONFIG_INI" in os.environ:” 判断环境变量的值有没有定义 如果定义的话就去环境变量的值,否则就取当前目录下的co ...

  5. bzoj4998 星球联盟 LCT + 并查集

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4998 题解 根据题意,就是要动态维护点双,求出一个点双的权值和. 所以这道题就是和 bzoj2 ...

  6. 前端之HTML:HTML

    前端基础之html 一.初始html 1.web服务本质 import socket sock=socket.socket(socket.AF_INET,socket.SOCK_STREAM) soc ...

  7. java:Conllection(List,set,get,map,subList)使用

    list中的contains:是否包含指定元素 list中的SubList:  返回列表中指定的 fromIndex(包括 )和 toIndex(不包括)之间的部分视图. List<String ...

  8. HC-42蓝牙模块-nRF52832-数传蓝牙

    资料下载地址:链接:https://pan.baidu.com/s/1RRajrI5NvNY8tRVuYbOTug    提取码:31ho 我的蓝牙模块淘宝购买地址:https://detail.tm ...

  9. button标签设置line-height问题

    默认设置line-height是不会有问题的. 加了边框后就会出现问题. 如果想要解决的话.就调整行高,自己满意为止.

  10. Jackson常用工具类

    原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11983194.html Demo package org.fool.util; import com. ...