题面:P2569 [SCOI2010]股票交易

题解:

F[i][j]表示前i天,目前手中有j股的最大收入
Case 1:第i天是第一次购买股票
F[i][j]=-j*AP[i]; (1<=j<=AS[i])
Case 2:第i天没有购买股票
F[i][j]=max(F[i][j],F[i-1][j])
Case 3:第i天买入j-k股
因为F[i][j]的最优情况是会顺承的,所以如果
第i天有交易的话,直接从第i-W-1天进行转移即可
F[i][j]=max(F[i][j],F[i-W-1][k]-AP[i]*(j-k))
(1<=j-k<=AS[i],i-W-1>=1)
Case 4:第i天卖出k-j股
F[i][j]=max(F[i][j],F[i-W-1][k]+BP[i]*(k-j))
(1<=k-j<=BS[i],i-W-1>=1)
再使用单调队列进行维护

所以对于Case 3:
找出max(F[i-W-1][k]+AP[i]*k)-AP[i]*j (1<=j-k<=AS[i],i-W-1>=1)
j-AS[i]<=k<=j-1,i-W-1>=1

对于Case 4:
找出max(F[i-W-1][k]+BP[i]*k)-BP[i]*j (1<=j-k<=BS[i],i-W-1>=1)
1+j<=k<=BS[i]+j,i-W-1>=1

额外:鸣谢@QZZ帮我解答了一个傻逼问题。

代码:

 #include<cstdio>
#include<queue>
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int maxn=,inf=<<;
int T,MaxP,W,F[maxn][maxn],AP[maxn],BP[maxn],AS[maxn],BS[maxn];
struct Node{ int k,data; }nd;
Node que[maxn];
int f1,f2,ans;
int main(){
scanf("%d%d%d",&T,&MaxP,&W);
for(int i=;i<=T;i++)
scanf("%d%d%d%d",&AP[i],&BP[i],&AS[i],&BS[i]);
for(int i=;i<=T;i++)
for(int j=;j<=MaxP;j++){
if(j<=AS[i]) F[i][j]=-j*AP[i];
else F[i][j]=-inf;
}
for(int i=;i<=T;i++){
for(int j=;j<=MaxP;j++) F[i][j]=max(F[i][j],F[i-][j]);
if(i-W->=){
int w=i-W-;
f1=;f2=;
for(int j=;j<=MaxP;j++){
while(f1<=f2 && que[f1].k<j-AS[i]) f1++;
if(f1<=f2) F[i][j]=max(F[i][j],que[f1].data-AP[i]*j);
while(f1<=f2 && F[w][j]+AP[i]*j>=que[f2].data) f2--;
que[++f2].k=j; que[f2].data=F[w][j]+AP[i]*j;
}
f1=;f2=;
for(int j=MaxP;j>=;j--){
while(f1<=f2 && que[f1].k>j+BS[i]) f1++;
if(f1<=f2) F[i][j]=max(F[i][j],que[f1].data-BP[i]*j);
while(f1<=f2 && F[w][j]+BP[i]*j>=que[f2].data) f2--;
que[++f2].k=j; que[f2].data=F[w][j]+BP[i]*j;
}
}
}
ans=-inf;
for(int i=;i<=MaxP;i++) ans=max(ans,F[T][i]);
printf("%d\n",ans);
return ;
}

By:AlenaNuna

单调队列优化DP || [SCOI2010]股票交易 || BZOJ 1855 || Luogu P2569的更多相关文章

  1. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  2. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  3. 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)

    传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...

  4. 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP

    上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...

  5. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  6. BZOJ 1499 [NOI2005] 瑰丽华尔兹 | 单调队列优化DP

    BZOJ 1499 瑰丽华尔兹 | 单调队列优化DP 题意 有一块\(n \times m\)的矩形地面,上面有一些障碍(用'#'表示),其余的是空地(用'.'表示).每时每刻,地面都会向某个方向倾斜 ...

  7. bzoj 1499 [NOI2005]瑰丽华尔兹——单调队列优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1499 简单的单调队列优化dp.(然而当时却WA得不行.今天总算填了坑) 注意滚动数组赋初值应 ...

  8. SCOI 股票交易 单调队列优化dp

    这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...

  9. 单调队列优化DP || [NOI2005]瑰丽华尔兹 || BZOJ 1499 || Luogu P2254

    题外话:题目极好,做题体验极差 题面:[NOI2005]瑰丽华尔兹 题解: F[t][i][j]表示第t时刻钢琴位于(i,j)时的最大路程F[t][i][j]=max(F[t-1][i][j],F[t ...

随机推荐

  1. MEF引起的内存泄露

    也许你编程的时候很小心,注意不引起内存泄露,例如不要被全局Static的变量引用上,注意Singleton的static引用,注意Event Handler注销,注意IDisposable接口实现,而 ...

  2. 阶段3 2.Spring_03.Spring的 IOC 和 DI_1 ioc的概念和作用

    IOC的含义 new的方式创建对象,是主动去找对象.对我的资源独立就变的很难,因为这有明显的依赖关系 第二种方式创建对象.app断开了和资源的联系,.而是去找工厂要一个资源.由工厂负责和资源去的联系, ...

  3. Python学习-------变量和简单的数据类型(String)

    1.变量命名和使用 变量命名规则:a.变量名只能包含(字母    数字   下划线),且变量不能以数字开头,例如:变量 s_1(正确),变量1_s(错误) b.变量名不能包含空格,可以使用下划线来间隔 ...

  4. MySQL 树形结构 根据指定节点 获取其所有叶子节点

    背景说明 需求:MySQL树形结构, 根据指定的节点,获取其下属的所有叶子节点. 叶子节点:如果一个节点下不再有子节点,则为叶子节点. 问题分析 1.可以使用类似Java这种面向对象的语言,对节点集合 ...

  5. python学习之内置函数(一)

    4.7 内置函数 4.7.1 内置函数(1) eval 执行字符串类型的代码,并返回最终结果. eval('2 + 2') # 4 n=81 eval("n + 4") # 85 ...

  6. 【神经网络与深度学习】【Python开发】Caffe配置 windows下怎么安装protobuf for python

    首先从google上下载protobuf-2.5.0.zip和protoc-2.5.0-win32.zip,然后把protoc-2.5.0-win32.zip里的protoc.exe放到protobu ...

  7. mysql 表字段 记录创建时间和更新时间

    sql语句创建: CREATE TABLE `NewTable` ( `id` int NOT NULL AUTO_INCREMENT , `name` varchar(20) NOT NULL , ...

  8. linux netstat 查看端口

    1. netstat命令用于显示系统的网络信息,包括网络连接 .路由表 .接口状态2. 一般我们使用 netstat 来查看本机开启了哪些端口,查看有哪些客户端连接 [root@localhost ~ ...

  9. python 并发编程 基于gevent模块 协程池 实现并发的套接字通信

    基于协程池 实现并发的套接字通信 客户端: from socket import * client = socket(AF_INET, SOCK_STREAM) client.connect(('12 ...

  10. FPGA —— LED控制

    第一次接触新东西的时候,难免会磕磕碰碰,不过遇到问题不要着急,慢慢来.原因总归是我们自己引起的,一步步找到问题的根源,然后彻底解决它,避免下次再犯. 在开始之前先分享一下工具:(Quartus II ...