【HDOJ6599】I Love Palindrome String(PAM,manacher)
题意:给出一个由小写字母组成的长为n的字符串S,定义他的子串【L,R】为周驿东串当且仅当【L,R】为回文串且【L,(L+R)/2】为回文串
求i=【1,n】 所有长度为i的周驿东串的个数
n<=3e5
思路:PAM把所有回文串找出来,记录一下在原串S中的位置和长度,最后check每个结点是不是周驿东串
check部分可以正反两次哈希,N=3e5应该要双哈
我是用manacher预处理出每个位置为中心的回文串的最大长度,check就直接看一下(l+mid)/2这个位置的长度有没有r-mid+1
std里还判了右半部分,迷惑行为
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef pair<ll,ll> Pll;
typedef vector<int> VI;
typedef vector<PII> VII;
typedef pair<ll,ll>P;
#define N 700010
#define M 200010
#define fi first
#define se second
#define MP make_pair
#define pi acos(-1)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++)
#define per(i,a,b) for(int i=(int)a;i>=(int)b;i--)
#define lowbit(x) x&(-x)
#define Rand (rand()*(1<<16)+rand())
#define id(x) ((x)<=B?(x):m-n/(x)+1)
#define ls p<<1
#define rs p<<1|1 const ll MOD=1e9+,inv2=(MOD+)/;
double eps=1e-;
ll INF=1ll<<;
ll inf=5e13;
int dx[]={-,,,};
int dy[]={,,-,}; char s[N];
int ans[N],aid[N],p[N],a[N],ID; int read()
{
int v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} void manacher(char *ch,int len)
{
rep(i,,len*+) a[i]=-;
int n=; a[]=; a[]=;
rep(i,,len)
{
a[++n]=ch[i]-'a'; aid[i]=n;
a[++n]=;
}
a[++n]=;
rep(i,,n) p[i]=;
int mx=,id=;
rep(i,,n-)
{
if(mx>i) p[i]=min(p[*id-i],mx-i);
else p[i]=;
while(a[i+p[i]]==a[i-p[i]]) p[i]++;
if(p[i]+i>mx)
{
mx=p[i]+i;
id=i;
}
}
rep(i,,n-) p[i]--;
} int isok(int l,int r)
{
int mid=(l+r)>>;
int t=(p[(aid[l]+aid[mid])>>]>=mid-l+);
return t;
} struct pam
{
int q,p,cnt[N],num[N],f[N],len[N],id[N],ch[N][]; pam(){} void init()
{
rep(i,,ID)
{
len[i]=f[i]=num[i]=id[i]=cnt[i]=;
rep(j,,) ch[i][j]=;
}
ID=;
f[]=f[]=; len[]=-;
} void add(int x,int n)
{
while(s[n-len[p]-]!=s[n]) p=f[p];
if(!ch[p][x])
{
int q=++ID,k=f[p];
len[q]=len[p]+;
while(s[n-len[k]-]!=s[n]) k=f[k];
f[q]=ch[k][x];
ch[p][x]=q;
num[q]=num[f[q]]+;
}
p=ch[p][x];
cnt[p]++;
id[p]=n;
} void solve()
{
per(i,ID,) cnt[f[i]]+=cnt[i];
rep(i,,ID)
if(len[i]>)
ans[len[i]]+=isok(id[i]-len[i]+,id[i])*cnt[i];
}
}pam; int main()
{
while(scanf("%s",s+)!=EOF)
{
int n=strlen(s+);
pam.init();
rep(i,,n) ans[i]=;
rep(i,,n) pam.add(s[i]-'a',i);
manacher(s,n);
pam.solve();
rep(i,,n-) printf("%d ",ans[i]);
printf("%d\n",ans[n]);
} return ;
}
【HDOJ6599】I Love Palindrome String(PAM,manacher)的更多相关文章
- 【BZOJ3676】 [Apio2014]回文串(SAM,manacher)
传送门 BZOJ 洛谷 Solution 考虑我们每找到一个回文串就更新一次答案,跑个SAM,这样子复杂度是爆炸的. 接下来的就是优化: 我们可以倍增跳直到跳不了,最后的siz就是出现次数. 没了?没 ...
- 【BZOJ4316】小C的独立集(仙人掌,动态规划)
[BZOJ4316]小C的独立集(仙人掌,动态规划) 题面 BZOJ 题解 除了普通的动态规划以外,这题还可以用仙人掌的做法来做. 这里没有必要把圆方树给建立出来 \(Tarjan\)的本质其实就是一 ...
- 【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)
[BZOJ5302][HAOI2018]奇怪的背包(动态规划,容斥原理) 题面 BZOJ 洛谷 题解 为啥泥萌做法和我都不一样啊 一个重量为\(V_i\)的物品,可以放出所有\(gcd(V_i,P)\ ...
- 【BZOJ2000】[HNOI2000]取石头游戏(贪心,博弈论)
[BZOJ2000][HNOI2000]取石头游戏(贪心,博弈论) 题面 BZOJ 洛谷 题解 这题好神仙啊,窝不会QaQ. 假装一下只有三个元素\(a_{i-1},a_i,a_{i+1}\),并且满 ...
- 【BZOJ5019】[SNOI2017]遗失的答案(FWT,动态规划)
[BZOJ5019][SNOI2017]遗失的答案(FWT,动态规划) 题面 BZOJ 题解 发现\(10^8\)最多分解为不超过\(8\)个本质不同质数的乘积. 而\(gcd\)和\(lcm\)分别 ...
- 【BZOJ1413】[ZJOI2009]取石子游戏(博弈论,动态规划)
[BZOJ1413][ZJOI2009]取石子游戏(博弈论,动态规划) 题面 BZOJ 洛谷 题解 神仙题.jpg.\(ZJOI\)是真的神仙. 发现\(SG\)函数等东西完全找不到规律,无奈只能翻题 ...
- 【BZOJ1019】[SHOI2008]汉诺塔(数论,搜索)
[BZOJ1019][SHOI2008]汉诺塔(数论,搜索) 题面 BZOJ 洛谷 题解 首先汉诺塔问题的递推式我们大力猜想一下一定会是形如\(f_i=kf_{i-1}+b\)的形式. 这个鬼玩意不好 ...
- 【LeetCode】9、Palindrome Number(回文数)
题目等级:Easy 题目描述: Determine whether an integer is a palindrome. An integer is a palindrome when it rea ...
- 【codeforces】Bear and Three Balls(排序,去重)
Bear and Three Balls Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I6 ...
随机推荐
- 132、TensorFlow加载模型
# The tf.train.Saver对象不仅保存变量到checkpoint文件 # 它也恢复变量,当你恢复变量的时候,你就不必须要提前初始化他们 # 列如如下的代码片段解释了如何去调用tf.tra ...
- PHP安装-centos7
下载地址:https://www.php.net/downloads.php 1.wget下载php源码至/usr/local/src 下 wget https://www.php.net/distr ...
- Vue混入:基础
混入 (mixin) 提供了一种非常灵活的方式,来分发 Vue 组件中的可复用功能. 一 App组件 <template> <div id="app"> & ...
- EasyUI的datagrid列属性添加超链接
$("#dg").datagrid({ url: "../Ajax/PurchaseAjax.ashx", queryParams: ...
- 20190816 On Java8 第六章 初始化和清理
第六章 初始化和清理 利用构造器保证初始化 在 Java 中,类的设计者通过构造器保证每个对象的初始化. 构造器名称与类名相同. 在 Java 中,对象的创建与初始化是统一的概念,二者不可分割. 方法 ...
- 微信小程序这一块(下)
1.小程序分为两部分 :页面.组件 2.小程序中如何定义自定义组件? 凡是通过Page创建的都是页面,而通过Components创建的都是组件 当组件创建成功后,在需要使用的页面进行引入,(找到页面的 ...
- js 为false的几种情况
1: false 2: null 3:undefined 4:"" 空字符串 5:0 6:NaN 如果你的if条件里面会出现 0 或者"",那么这种肯定是为假的 ...
- CSS的置换和非置换元素
一个来自面试的坑. 面试的时候考官先问了行内元素和块级元素的区别,这个不难理解.然后一脚就踩进了,置换元素的坑.例如img就是行内置换元素,这种行内元素是可以设置宽高的. 什么是置换元素 一个内容不受 ...
- [Codeforces 1178D]Prime Graph (思维+数学)
Codeforces 1178D (思维+数学) 题面 给出正整数n(不一定是质数),构造一个边数为质数的无向连通图(无自环重边),且图的每个节点的度数为质数 分析 我们先构造一个环,每个点的度数都是 ...
- Codeforces 1110F(DFS序+线段树)
题面 传送门 分析 next_id = 1 id = array of length n filled with -1 visited = array of length n filled with ...