AI-IBM-cognitive class --Liner Regression
Liner Regression
import matplotlib.pyplot as plt
import pandas as pd
import pylab as pl
import numpy as np
%matplotlib inline
%motib inline
%matplotlib作用
- 是在使用jupyter notebook 或者 jupyter qtconsole的时候,才会经常用到%matplotlib,
- 而%matplotlib具体作用是当你调用matplotlib.pyplot的绘图函数plot()进行绘图的时候,或者生成一个figure画布的时候,可以直接在你的python console里面生成图像。
在spyder或者pycharm实际运行代码的时候,可以注释掉这一句
下载数据包
!wget -O FuelConsumption.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/FuelConsumptionCo2.csv
df = pd.read_csv("./FuelConsumptionCo2.csv") # use pandas to read csv file. # take a look at the dataset, show top 10 lines.
df.head(10)
out:
# summarize the data
print(df.describe())
使用describe函数进行表格的预处理,求出最大最小值,已经分比例的数据。
out:
进行表格的重新组合, 提取出我们关心的数据类型。
out:
cdf = df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB','CO2EMISSIONS','FUELCONSUMPTION_CITY']]
cdf.head(9)
每一列数据可生成hist(直方图)
viz = cdf[['CYLINDERS','ENGINESIZE','CO2EMISSIONS','FUELCONSUMPTION_COMB','FUELCONSUMPTION_CITY']]
viz.hist()
plt.show()
使用scatter生成散列图, 定义散列图的参数, 颜色
具体使用可参考连接:https://blog.csdn.net/qiu931110/article/details/68130199
plt.scatter(cdf.FUELCONSUMPTION_COMB, cdf.CO2EMISSIONS, color='blue')
plt.xlabel("FUELCONSUMPTION_COMB")
plt.ylabel("Emission")
plt.show()
选择表中len长度小于8的数据, 创建训练集合测试集,并生成散列图
Creating train and test dataset
Train/Test Split involves splitting the dataset into training and testing sets respectively, which are mutually exclusive. After which, you train with the training set and test with the testing set. This will provide a more accurate evaluation on out-of-sample accuracy because the testing dataset is not part of the dataset that have been used to train the data. It is more realistic for real world problems.
This means that we know the outcome of each data point in this dataset, making it great to test with! And since this data has not been used to train the model, the model has no knowledge of the outcome of these data points. So, in essence, it is truly an out-of-sample testing.
msk = np.random.rand(len(df)) < 0.8
train = cdf[msk]
test = cdf[~msk]
print(train)
print(test)
plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue')
plt.xlabel("Engine size")
plt.ylabel("Emission")
plt.show()
Modeling: Using sklearn package to model data.
from sklearn import linear_model
regr = linear_model.LinearRegression()
train_x = np.asanyarray(train[['ENGINESIZE']])
train_y = np.asanyarray(train[['CO2EMISSIONS']])
regr.fit (train_x, train_y)
# The coefficients
print ('Coefficients: ', regr.coef_)
print ('Intercept: ',regr.intercept_)
out:
Coefficients: [[39.64984954]]
Intercept: [124.08949291] As mentioned before, Coefficient and Intercept in the simple linear regression, are the parameters of the fit line. Given that it is a simple linear regression,
with only 2 parameters, and knowing that the parameters are the intercept and slope of the line, sklearn can estimate them directly from our data.
Notice that all of the data must be available to traverse and calculate the parameters.
plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue')
plt.plot(train_x, regr.coef_[0][0]*train_x + regr.intercept_[0], '-r')
# 通过斜率和截距画出线性回归曲线
plt.xlabel("Engine size")
plt.ylabel("Emission")
使用sklearn.linear_model.LinearRegression进行线性回归 参考以下连接:
https://www.cnblogs.com/magle/p/5881170.html
AI-IBM-cognitive class --Liner Regression的更多相关文章
- (三)用Normal Equation拟合Liner Regression模型
继续考虑Liner Regression的问题,把它写成如下的矩阵形式,然后即可得到θ的Normal Equation. Normal Equation: θ=(XTX)-1XTy 当X可逆时,(XT ...
- CS229 3.用Normal Equation拟合Liner Regression模型
继续考虑Liner Regression的问题,把它写成如下的矩阵形式,然后即可得到θ的Normal Equation. Normal Equation: θ=(XTX)-1XTy 当X可逆时,(XT ...
- (线性回归)Liner Regression简单应用
警告:本文为小白入门学习笔记 数据连接: http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearni ...
- (转)A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers
A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers. Updated 20 ...
- (四)Logistic Regression
1 线性回归 回归就是对已知公式的未知参数进行估计.线性回归就是对于多维空间中的样本点,用特征的线性组合去拟合空间中点的分布和轨迹,比如已知公式是y=a∗x+b,未知参数是a和b,利用多真实的(x,y ...
- 广义线性模型 GLM
Logistic Regression 同 Liner Regression 均属于广义线性模型,Liner Regression 假设 $y|x ; \theta$ 服从 Gaussian 分布,而 ...
- 决策树之 CART
继上篇文章决策树之 ID3 与 C4.5,本文继续讨论另一种二分决策树 Classification And Regression Tree,CART 是 Breiman 等人在 1984 年提出的, ...
- [machine learning] Loss Function view
[machine learning] Loss Function view 有关Loss Function(LF),只想说,终于写了 一.Loss Function 什么是Loss Function? ...
- 【转】Loss Function View
感谢原文作者!原文地址:http://eletva.com/tower/?p=186 一.Loss Function 什么是Loss Function?wiki上有一句解释我觉得很到位,引用一下:Th ...
随机推荐
- SQL中exists和in的区别
- Spring的AOP和IoC及隔离级别
Spring的AOP和IoC Spring AOP:代理机制.Spring提供的自动代理机制 Spring的IoC来实组件之间的依赖关系注入, 使控制层与业务实现分离,即客户通过调用业务委托接口来调用 ...
- 在 CentOS 上部署 GitLab (自托管的Git项目仓库)
参考资料https://github.com/mattias-ohlsson/gitlab-installer/blob/master/gitlab-install-el6.sh 环境准备OS: Ce ...
- pspice建立仿真模型元件库
摘自:http://royroyyy.blog.163.com/blog/static/1376506172011026102216175/ PSpice9.2电子元器件模型--由网页下载的model ...
- ORM多表查询下
一.多表查询 1.基于双下划线的跨表查询 Django 还提供了一种直观而高效的方式在查询(lookups)中表示关联关系,它能自动确认 SQL JOIN 联系.要做跨关系查询,就使用两个下划线来链接 ...
- FastDFS搭建文件管理系统
参考:https://www.cnblogs.com/chiangchou/p/fastdfs.html 目录: 一:FastDFS介绍 1:简介: FastDFS 是一个开源的高性能分布式文件系统( ...
- R语言预测实战(第一章)
本例使用forecast包中自带的数据集wineind,它表示从1980年1月到1994年8月, 由葡萄酒生产商销售的容量不到1升的澳大利亚酒的总量.数据示意如下: #观察曲线簇 len=1993-1 ...
- delphi for DirectUI界面库
下面是form代码: unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Cont ...
- 问候 UEditor 的大爷
记录该日志的时间是2015年2月1日. 先给出 UEditor 项目的首页,它是一款由百度开发的开源富文本编辑器,关于它的介绍,大家可以查看百度百科. UEditor - 首页http://uedit ...
- 添加对象到 HashSet 里的规则是
下面的解释取自百度知道的一位网友的回答,链接如下: java HashSet类添加元素的问题_百度知道http://zhidao.baidu.com/link?url=9bcAnolev1EBeFI_ ...