Liner Regression

 import matplotlib.pyplot as plt
import pandas as pd
import pylab as pl
import numpy as np
%matplotlib inline
%motib inline

%matplotlib作用

  1. 是在使用jupyter notebook 或者 jupyter qtconsole的时候,才会经常用到%matplotlib,
  2. 而%matplotlib具体作用是当你调用matplotlib.pyplot的绘图函数plot()进行绘图的时候,或者生成一个figure画布的时候,可以直接在你的python console里面生成图像。

在spyder或者pycharm实际运行代码的时候,可以注释掉这一句

下载数据包

!wget -O FuelConsumption.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/FuelConsumptionCo2.csv
df = pd.read_csv("./FuelConsumptionCo2.csv") # use pandas to read csv file.

# take a look at the dataset, show top 10 lines.
df.head(10)

out:

# summarize the data
print(df.describe())

使用describe函数进行表格的预处理,求出最大最小值,已经分比例的数据。

out:

进行表格的重新组合, 提取出我们关心的数据类型。

out:

cdf = df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB','CO2EMISSIONS','FUELCONSUMPTION_CITY']]
cdf.head(9)

每一列数据可生成hist(直方图)

viz = cdf[['CYLINDERS','ENGINESIZE','CO2EMISSIONS','FUELCONSUMPTION_COMB','FUELCONSUMPTION_CITY']]
viz.hist()
plt.show()

使用scatter生成散列图, 定义散列图的参数, 颜色

具体使用可参考连接:https://blog.csdn.net/qiu931110/article/details/68130199

plt.scatter(cdf.FUELCONSUMPTION_COMB, cdf.CO2EMISSIONS,  color='blue')
plt.xlabel("FUELCONSUMPTION_COMB")
plt.ylabel("Emission")
plt.show()

选择表中len长度小于8的数据, 创建训练集合测试集,并生成散列图

Creating train and test dataset

Train/Test Split involves splitting the dataset into training and testing sets respectively, which are mutually exclusive. After which, you train with the training set and test with the testing set. This will provide a more accurate evaluation on out-of-sample accuracy because the testing dataset is not part of the dataset that have been used to train the data. It is more realistic for real world problems.

This means that we know the outcome of each data point in this dataset, making it great to test with! And since this data has not been used to train the model, the model has no knowledge of the outcome of these data points. So, in essence, it is truly an out-of-sample testing.

msk = np.random.rand(len(df)) < 0.8
train = cdf[msk]
test = cdf[~msk]
print(train)
print(test)
plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS,  color='blue')
plt.xlabel("Engine size")
plt.ylabel("Emission")
plt.show()

Modeling: Using sklearn package to model data.

from sklearn import linear_model
regr = linear_model.LinearRegression()
train_x = np.asanyarray(train[['ENGINESIZE']])
train_y = np.asanyarray(train[['CO2EMISSIONS']])
regr.fit (train_x, train_y)
# The coefficients
print ('Coefficients: ', regr.coef_)
print ('Intercept: ',regr.intercept_)

out:

Coefficients:  [[39.64984954]]
Intercept: [124.08949291] As mentioned before, Coefficient and Intercept in the simple linear regression, are the parameters of the fit line. Given that it is a simple linear regression,
with only 2 parameters, and knowing that the parameters are the intercept and slope of the line, sklearn can estimate them directly from our data.
Notice that all of the data must be available to traverse and calculate the parameters.
plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS,  color='blue')
plt.plot(train_x, regr.coef_[0][0]*train_x + regr.intercept_[0], '-r')
# 通过斜率和截距画出线性回归曲线
plt.xlabel("Engine size")
plt.ylabel("Emission")

使用sklearn.linear_model.LinearRegression进行线性回归 参考以下连接:

https://www.cnblogs.com/magle/p/5881170.html


 

AI-IBM-cognitive class --Liner Regression的更多相关文章

  1. (三)用Normal Equation拟合Liner Regression模型

    继续考虑Liner Regression的问题,把它写成如下的矩阵形式,然后即可得到θ的Normal Equation. Normal Equation: θ=(XTX)-1XTy 当X可逆时,(XT ...

  2. CS229 3.用Normal Equation拟合Liner Regression模型

    继续考虑Liner Regression的问题,把它写成如下的矩阵形式,然后即可得到θ的Normal Equation. Normal Equation: θ=(XTX)-1XTy 当X可逆时,(XT ...

  3. (线性回归)Liner Regression简单应用

    警告:本文为小白入门学习笔记 数据连接: http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearni ...

  4. (转)A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers

    A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers. Updated 20 ...

  5. (四)Logistic Regression

    1 线性回归 回归就是对已知公式的未知参数进行估计.线性回归就是对于多维空间中的样本点,用特征的线性组合去拟合空间中点的分布和轨迹,比如已知公式是y=a∗x+b,未知参数是a和b,利用多真实的(x,y ...

  6. 广义线性模型 GLM

    Logistic Regression 同 Liner Regression 均属于广义线性模型,Liner Regression 假设 $y|x ; \theta$ 服从 Gaussian 分布,而 ...

  7. 决策树之 CART

    继上篇文章决策树之 ID3 与 C4.5,本文继续讨论另一种二分决策树 Classification And Regression Tree,CART 是 Breiman 等人在 1984 年提出的, ...

  8. [machine learning] Loss Function view

    [machine learning] Loss Function view 有关Loss Function(LF),只想说,终于写了 一.Loss Function 什么是Loss Function? ...

  9. 【转】Loss Function View

    感谢原文作者!原文地址:http://eletva.com/tower/?p=186 一.Loss Function 什么是Loss Function?wiki上有一句解释我觉得很到位,引用一下:Th ...

随机推荐

  1. java判断回文数

  2. Tenka1 Programmer Contest D - Crossing

    链接 Tenka1 Programmer Contest D - Crossing 给定\(n\),要求构造\(k\)个集合\({S_k}\),使得\(1\)到\(n\)中每个元素均在集合中出现两次, ...

  3. hashlib模块subprocess模块

    '''通过一种算法,将字符串得出一种编码内容相同则hash运算结果相同,内容稍微改变则hash值改变不可逆推相同算法,无论校验多长的数据,得到的hash值长度固定'''# import hashlib ...

  4. SNOI2017 礼物

    题解 设前\(n\)个人的礼物个数和为\(F_n\), 那么显然\[F_n = 2 \times F_{n-1} + i^k\] 考虑矩阵快速幂 棘手的问题是:\(i^k\)不是可以直接用矩阵乘法可以 ...

  5. 循环神经网络(LSTM和GRU)(1)

    循环神经网络的简单实现: import tensorflow as tf x=[1,2] state=[0.0,0.0] w_cell_state=np.array([[0.1,0.2],[0.3,0 ...

  6. [洛谷P4841][集训队作业2013]城市规划

    传送门 题目大意 求出\(n\)个点的简单(无重边无自环)有标号无向连通图数目.\(n\leq 130000\). 题解 题意非常简单,但做起来很难.这是道生成函数经典题,博主当做例题学习用的.博主看 ...

  7. 027:for标签使用详解

    for标签使用详解: for...in... 标签: for...in... 类似于 Python 中的 for...in... .可以遍历列表.元组.字符串.字典等一切可以遍历的对象.示例代码如下: ...

  8. 在浏览器地址栏中查看cookie

    在IE地址栏中输入javascript:alert(document.cookie) 或者地址栏直接打javascript:document.write(document.cookie);

  9. mysql_DML_select_union

    使用union可以将多个select 语句的查询结果集组合成一个结果集.select 字段列表1 from table1union [all]select 字段列表2 from table2...说明 ...

  10. 快速理解 session/token/cookie 认证方式

    目录 目录 cookie session token cookie Web Application 一般以 HTTP 协议作为传输协议, 但 HTTP 协议是无状态的. 也就是说 server-sid ...