分析

假如实验皿是二维的,那么这道题便是一个二分图最小点覆盖问题,可以转化为二分图最大匹配问题,使用匈牙利算法解决。

考虑如何扩展到三维,首先我们发现一次操作的代价为\(min(x,y,z)\)。不难想到(\(?\)),每次操作的\(x,y,z\)中有一项为\(1\),另外两项为相应的最大值,即每次操作这个长方体的一个面(一“片”)时可以使答案最优。

题目中有一个限制条件为\(a \times b \times c \leq 5000\),可以发现\(min(a,b,c) \leq 17\)。假设\(c=min(a,b,c)\),我们可以把这个长方体分成\(c\)层,然后\(2^c\)枚举这\(c\)层中操作了哪些层。对于剩下的两维,便是第一段所述的二分图最小点覆盖问题。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
#define rin(i,a,b) for(int i=(a);i<=(b);i++)
#define rec(i,a,b) for(int i=(a);i>=(b);i--)
#define trav(i,a) for(int i=head[(a)];i;i=e[i].nxt)
using std::cin;
using std::cout;
using std::endl;
typedef long long LL; inline int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x;
} const int MAXN=5005;
int n,m,h,tot;
int xx[MAXN],yy[MAXN],zz[MAXN];
int head[MAXN],ecnt;
int match[MAXN],tag;
int vis[MAXN];
struct Edge{
int to,nxt;
}e[MAXN]; inline void add_edge(int bg,int ed){
ecnt++;
e[ecnt].to=ed;
e[ecnt].nxt=head[bg];
head[bg]=ecnt;
} int dfs(int x){
trav(i,x){
int ver=e[i].to;
if(vis[ver]==tag) continue;
vis[ver]=tag;
if(!match[ver]||dfs(match[ver])){
match[ver]=x;
return 1;
}
}
return 0;
} int main(){
int T=read();
while(T--){
int typ;
h=read(),n=read(),m=read();
if(h<=std::min(n,m)) typ=1;
else if(n<=std::min(h,m)) typ=2;
else typ=3;
tot=0;
rin(i,1,h) rin(j,1,n) rin(k,1,m){
int temp=read();
if(!temp) continue;
tot++;
if(typ==1) zz[tot]=i,xx[tot]=j,yy[tot]=k;
else if(typ==2) zz[tot]=j,xx[tot]=i,yy[tot]=j;
else zz[tot]=k,xx[tot]=i,yy[tot]=j;
}
int hh=h,nn=n,mm=m;
if(typ==2) h=nn,n=hh;
else if(typ==3) h=mm,n=hh,m=nn;
int S=(1<<h)-1,ans=1e9;
rin(i,0,S){
int temp=__builtin_popcount(i);
ecnt=0;
rin(j,1,n) head[j]=0;
rin(j,1,m) match[j]=0;
rin(j,1,tot){
if((i>>(zz[j]-1))&1) continue;
add_edge(xx[j],yy[j]);
}
rin(j,1,n){
tag++;
if(dfs(j)) temp++;
if(temp>=ans) break;
}
ans=std::min(ans,temp);
}
printf("%d\n",ans);
}
return 0;
}

[BZOJ3140][HNOI2013]消毒:二分图匹配的更多相关文章

  1. [BZOJ3140][HNOI2013]消毒(二分图最小点覆盖)

    3140: [Hnoi2013]消毒 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1621  Solved: 676[Submit][Status] ...

  2. BZOJ.3140.[HNOI2013]消毒(二分图匹配 匈牙利)

    题目链接 不难想到每次一定是切一片. 如果是平面,很容易想到直接做二分图匹配.对于3维的? 可以发现min(a,b,c)的最大值只有\(\sqrt[3]{n}≈17\),我们暴力枚举这一最小值代表的是 ...

  3. [HNOI2013] 消毒 - 二分图匹配

    容易发现 \(a,b,c\) 中至少有一个 \(\leq 17\) 不妨将其调剂为 \(a\),那么我们可以暴力枚举哪些 \(x\) 片片要被直接削掉,剩下的拍扁成二维情况 二维时,如果有一个格子是 ...

  4. bzoj3140: [Hnoi2013]消毒

    Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数.为了实验的方便,它被划分为a*b*c ...

  5. bzoj3140: [Hnoi2013]消毒(二分图)

    题目描述 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数.为了实验的方便,它被划分为a*b*c个单位立方体区 ...

  6. [luogu3231 HNOI2013] 消毒 (二分图最小点覆盖)

    传送门 Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正整数.为了实验的方便,它被划分为abc ...

  7. bzoj千题计划295:bzoj3140: [Hnoi2013]消毒

    http://www.lydsy.com/JudgeOnline/problem.php?id=3140 如果只有两维,那就是二分图最小点覆盖 现在是三维,但是a*b*c<=5000,说明最小的 ...

  8. 【BZOJ3140】消毒(二分图匹配)

    [BZOJ3140]消毒(二分图匹配) 题面 Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正 ...

  9. P3231 [HNOI2013]消毒

    P3231 [HNOI2013]消毒 二维覆盖我们已经很熟悉了 扩展到三维,枚举其中较小的一维,这里定义为$a$ 以$a$为关键字状压,$1$表示该面全选 剩下的面和二维覆盖一样二分图匹配 如果还没接 ...

随机推荐

  1. 【Linux开发】【Qt开发】QT 同时支持鼠标和触摸屏

    QT 同时支持鼠标和触摸屏 现在 如果我要使用鼠标 导入环境变量 export QWS_MOUSE_PROTO=MouseMan:/dev/input/mice 使用触摸屏,导入环境变量 export ...

  2. spring -boot定时任务 quartz 基于 MethodInvokingJobDetailFactoryBean 实现

    spring 定时任务 quartz 基于  MethodInvokingJobDetailFactoryBean 实现 依赖包 如下 <dependencies> <depende ...

  3. [DS+Algo] 007 希尔排序及其代码实现

    步骤 将数组列在一个表(一行多列)中,按特定的步长进行插入排序 步长从 length/2 到 1,每次除 2 将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序 算法性能 (根据步长序 ...

  4. dotnet sdk 的镜像tag 相关

    https://hub.docker.com/_/microsoft-dotnet-core-sdk/ 微软的dotnet sdk 的 tag 微软貌似改默认镜像 dockerhub 里面的tag与 ...

  5. [转帖]socat使用笔记

    socat使用笔记 https://blog.csdn.net/yangbingzhou/article/details/49783235 进行简单学习 centos 下面安装 yum install ...

  6. JAVA知识点总结(六)(集合)

    第十九章 集合 一.数组弊端: 数组长度是固定的,无法继续添加元素. 二.什么是集合: Java提供一个集合类,它的长度是可以改变的,能储存任意的对象,长度随着元素的增加而增加. 三.集合和数组的区别 ...

  7. mysql5.7单机多实例安装

    基于之前的mysql5.7单实例安装 修改/etc/my.cnf文件如下(这里配置4个实例,可自行修改数目) # # 多实例配置文件,可以mysqld_multi --example 查看例子 # [ ...

  8. yii日志保存机制

    一.修改yii框架的配置文件(main.php) 'log' => array( 'class' => 'CLogRouter', 'routes' => array( array( ...

  9. HNUSTOJ-1695 跳格子(略感头疼)

    1695: 跳格子 时间限制: 1 Sec  内存限制: 128 MB提交: 230  解决: 57[提交][状态][讨论版] 题目描述 逸夫楼的大厅的地面有10行10列的石砖,我们用坐标(x,y)来 ...

  10. IWorkspaceFactory pWorkspaceFactory = new ShapefileWorkspaceFactoryClass(); 时,报COMException

    解决办法: 在Program.cs的Main函数中添加如下代码: ESRI.ArcGIS.RuntimeManager.Bind(ESRI.ArcGIS.ProductCode.Desktop);