分析

假如实验皿是二维的,那么这道题便是一个二分图最小点覆盖问题,可以转化为二分图最大匹配问题,使用匈牙利算法解决。

考虑如何扩展到三维,首先我们发现一次操作的代价为\(min(x,y,z)\)。不难想到(\(?\)),每次操作的\(x,y,z\)中有一项为\(1\),另外两项为相应的最大值,即每次操作这个长方体的一个面(一“片”)时可以使答案最优。

题目中有一个限制条件为\(a \times b \times c \leq 5000\),可以发现\(min(a,b,c) \leq 17\)。假设\(c=min(a,b,c)\),我们可以把这个长方体分成\(c\)层,然后\(2^c\)枚举这\(c\)层中操作了哪些层。对于剩下的两维,便是第一段所述的二分图最小点覆盖问题。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
#define rin(i,a,b) for(int i=(a);i<=(b);i++)
#define rec(i,a,b) for(int i=(a);i>=(b);i--)
#define trav(i,a) for(int i=head[(a)];i;i=e[i].nxt)
using std::cin;
using std::cout;
using std::endl;
typedef long long LL; inline int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x;
} const int MAXN=5005;
int n,m,h,tot;
int xx[MAXN],yy[MAXN],zz[MAXN];
int head[MAXN],ecnt;
int match[MAXN],tag;
int vis[MAXN];
struct Edge{
int to,nxt;
}e[MAXN]; inline void add_edge(int bg,int ed){
ecnt++;
e[ecnt].to=ed;
e[ecnt].nxt=head[bg];
head[bg]=ecnt;
} int dfs(int x){
trav(i,x){
int ver=e[i].to;
if(vis[ver]==tag) continue;
vis[ver]=tag;
if(!match[ver]||dfs(match[ver])){
match[ver]=x;
return 1;
}
}
return 0;
} int main(){
int T=read();
while(T--){
int typ;
h=read(),n=read(),m=read();
if(h<=std::min(n,m)) typ=1;
else if(n<=std::min(h,m)) typ=2;
else typ=3;
tot=0;
rin(i,1,h) rin(j,1,n) rin(k,1,m){
int temp=read();
if(!temp) continue;
tot++;
if(typ==1) zz[tot]=i,xx[tot]=j,yy[tot]=k;
else if(typ==2) zz[tot]=j,xx[tot]=i,yy[tot]=j;
else zz[tot]=k,xx[tot]=i,yy[tot]=j;
}
int hh=h,nn=n,mm=m;
if(typ==2) h=nn,n=hh;
else if(typ==3) h=mm,n=hh,m=nn;
int S=(1<<h)-1,ans=1e9;
rin(i,0,S){
int temp=__builtin_popcount(i);
ecnt=0;
rin(j,1,n) head[j]=0;
rin(j,1,m) match[j]=0;
rin(j,1,tot){
if((i>>(zz[j]-1))&1) continue;
add_edge(xx[j],yy[j]);
}
rin(j,1,n){
tag++;
if(dfs(j)) temp++;
if(temp>=ans) break;
}
ans=std::min(ans,temp);
}
printf("%d\n",ans);
}
return 0;
}

[BZOJ3140][HNOI2013]消毒:二分图匹配的更多相关文章

  1. [BZOJ3140][HNOI2013]消毒(二分图最小点覆盖)

    3140: [Hnoi2013]消毒 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1621  Solved: 676[Submit][Status] ...

  2. BZOJ.3140.[HNOI2013]消毒(二分图匹配 匈牙利)

    题目链接 不难想到每次一定是切一片. 如果是平面,很容易想到直接做二分图匹配.对于3维的? 可以发现min(a,b,c)的最大值只有\(\sqrt[3]{n}≈17\),我们暴力枚举这一最小值代表的是 ...

  3. [HNOI2013] 消毒 - 二分图匹配

    容易发现 \(a,b,c\) 中至少有一个 \(\leq 17\) 不妨将其调剂为 \(a\),那么我们可以暴力枚举哪些 \(x\) 片片要被直接削掉,剩下的拍扁成二维情况 二维时,如果有一个格子是 ...

  4. bzoj3140: [Hnoi2013]消毒

    Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数.为了实验的方便,它被划分为a*b*c ...

  5. bzoj3140: [Hnoi2013]消毒(二分图)

    题目描述 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数.为了实验的方便,它被划分为a*b*c个单位立方体区 ...

  6. [luogu3231 HNOI2013] 消毒 (二分图最小点覆盖)

    传送门 Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正整数.为了实验的方便,它被划分为abc ...

  7. bzoj千题计划295:bzoj3140: [Hnoi2013]消毒

    http://www.lydsy.com/JudgeOnline/problem.php?id=3140 如果只有两维,那就是二分图最小点覆盖 现在是三维,但是a*b*c<=5000,说明最小的 ...

  8. 【BZOJ3140】消毒(二分图匹配)

    [BZOJ3140]消毒(二分图匹配) 题面 Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正 ...

  9. P3231 [HNOI2013]消毒

    P3231 [HNOI2013]消毒 二维覆盖我们已经很熟悉了 扩展到三维,枚举其中较小的一维,这里定义为$a$ 以$a$为关键字状压,$1$表示该面全选 剩下的面和二维覆盖一样二分图匹配 如果还没接 ...

随机推荐

  1. Springboot2.x集成Redis哨兵模式

    Springboot2.x集成Redis哨兵模式 说明 Redis哨兵模式是Redis高可用方案的一种实现方式,通过哨兵来自动实现故障转移,从而保证高可用. 准备条件 pom.xml中引入相关jar ...

  2. 软技能-代码外的生存指南PDF下载

    编程只是我们职业生涯中的一部分,我们还需要更多的其他技能 链接:https://pan.baidu.com/s/1d7z_7NCEFT2lsSWO1n-OuA 提取码:zj32 链接失效请留言

  3. SpringBoot自定义Starter实现

    自定义Starter: Starter会把所有用到的依赖都给包含进来,避免了开发者自己去引入依赖所带来的麻烦.Starter 提供了一种开箱即用的理念,其中核心就是springboot的自动配置原理相 ...

  4. XLS导出的服务器端配置方式

    IIS支持excel导出: 1.开始—运行,然后键入DCOMCNFG; 2.组件服务—计算机—我的电脑—DCOM配置,这时弹出一个问注册的窗口,确定注册. 这时如果一切恢复正常了,不用往下操作了. 关 ...

  5. Servlet,HttpServletRequest 和 HttpServletResponse

    今天是周六,老子加班,还可吧, 哈哈哈哈哈哈哈哈哈哈哈哈哈 此次更新的内容是HttpServletRequest 和 HttpServletResponse 昨天复习了一部分内容,今天又把剩下的看完. ...

  6. Aliyun-Centos 7 LNMP安装(最新版LNMP)

    linux装软件方式:1.源码安装:下载wget-->解压tar -zxvf -->配置 ./configure --->编译make -->安装 make install 2 ...

  7. 通过编写串口助手工具学习MFC过程——(十)UpdateData()用法和编辑框的赋值、取值

    通过编写串口助手工具学习MFC过程 因为以前也做过几次MFC的编程,每次都是项目完成时,MFC基本操作清楚了,但是过好长时间不再接触MFC的项目,再次做MFC的项目时,又要从头开始熟悉.这次通过做一个 ...

  8. 剑指offer-python-回溯法-矩阵中的路径

    这个系列主要详细记录代码详解的过程. 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径.路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格 ...

  9. Mysql数据库在建表时指定engine等于InnoDB 或MyISAM的意义

    一.ISAM和InnoDB的定义 1. ISAM ISAM是一个定义明确且历经时间考验的数据表格管理方法,它在设计之时就考虑到数据库被查询的次数要远大于更新的次数.因此,ISAM执行读取操作的速度很快 ...

  10. intellij idea 的快捷键方法

    1.Ctrl+N按名字搜索类 相当于eclipse的ctrl+shift+R,输入类名可以定位到这个类文件,就像idea在其它的搜索部分的表现一样,搜索类名也能对你所要搜索的内容多个部分进行匹配,而且 ...