(2017北大特优)在$\Delta ABC$中,$cos A+\sqrt{2}cos B+\sqrt{2}cos C$的最大值____


解答 :2
$cos A+\sqrt{2}cos B+\sqrt{2}cos C$

$=cos A+2\sqrt{2}cos\dfrac{B+C}{2}cos\dfrac{B-C}{2}\le1-2sin^2\dfrac{A}{2}+2\sqrt{2}sin\dfrac{A}{2}\le2$

提示:$p\cos\alpha+q\cos\beta+r\cos\gamma\le\dfrac{1}{2}\sum\limits_{cyc}\dfrac{qr}{p}$
嵌入不等式:$$2yzcosA+2zxcosB+2xycosC\le x^2+y^2+z^2$$中令$(x,y,z)=(\sqrt{\dfrac{qr}{p}},\sqrt{\dfrac{rp}{q}},\sqrt{\dfrac{pq}{r}})$即得.

MT【287】余弦的线性组合的更多相关文章

  1. MT【34】正余弦的正整数幂次快速表示成正余弦的线性组合

    问题:如何快速把$cos^4xsin^3x$表示成正弦,余弦的线性组合? 分析:利用牛顿二项式展开以下表达式: 再利用欧拉公式$e^{i\theta}=cos\theta+isin\theta$ 比如 ...

  2. MT【187】余弦的线性组合

    已知$\alpha+\beta+\gamma=\pi,(\alpha,\beta,\gamma\ge0)$ 求:$3\cos\alpha+4\cos\beta+5\cos\gamma$的最大值____ ...

  3. 小波变换(wavelet transform)的通俗解释(一)

    小波变换 小波,一个神奇的波,可长可短可胖可瘦(伸缩平移),当去学习小波的时候,第一个首先要做的就是回顾傅立叶变换(又回来了,唉),因为他们都是频率变换的方法,而傅立叶变换是最入门的,也是最先了解的, ...

  4. MT【300】余弦的三倍角公式

    2017清华大学THUSSAT附加学科测试数学(二测)$\cos^5\dfrac{\pi}{9}+\cos^5\dfrac{5\pi}{9}+\cos^5\dfrac{7\pi}{9}$ 的值为___ ...

  5. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  6. 287. Find the Duplicate Number hard

    287. Find the Duplicate Number   hard http://www.cnblogs.com/grandyang/p/4843654.html 51. N-Queens h ...

  7. Atitti knn实现的具体四个距离算法 欧氏距离、余弦距离、汉明距离、曼哈顿距离

    Atitti knn实现的具体四个距离算法  欧氏距离.余弦距离.汉明距离.曼哈顿距离 1. Knn算法实质就是相似度的关系1 1.1. 文本相似度计算在信息检索.数据挖掘.机器翻译.文档复制检测等领 ...

  8. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  9. C#——Dictionary<TKey, TValue> 计算向量的余弦值

    说明:三角函数的余弦值Cos我想,每个学计算机的理工人都知道,但是真的明白它的用途,我也是刚明白.每个人在初中或者高中的时候,都有这么个疑惑,学三角函数干什么用的?很直白的答案就是考试用的.而且当时的 ...

随机推荐

  1. C. Nastya Is Transposing Matrices

    链接 [https://codeforces.com/contest/1136/problem/C] 题意 给你两个规模一样的矩阵 问是否可以通过不断选取A矩阵的子"方正"转置得到 ...

  2. vue学习笔记总结----思维导图

  3. Go Web --- 创建一个Article的增删改查

    掌握数据的增删改查之后,就可以做一些小demo,巩固一下基础,让语法更加熟练,所以下面是按照Go web编程里面的文章管理操作,写的一个代码: package main import ( " ...

  4. Memcached 集群架构与memcached-session-manager

    Memcached 集群架构方面的问题_知识库_博客园https://kb.cnblogs.com/page/69074/ memcached-session-manager配置 - 学习中间件调优管 ...

  5. python 3.6.1 安装scrapy踩坑之旅

    系统环境:win10 64位系统安装 python基础环境配置不做过多的介绍 window环境安装scrapy需要依赖pywin32,下载对应python版本的exe文件执行安装,下载的pywin32 ...

  6. Linux中各个目录作用

    对于linux新手来说,最感到迷惑的问题之一就是文件都存在哪里呢?特别是对于那些从windows转过来的新手来说,linux的目录结构看起来有些奇怪哦.比如没有C盘,没有分盘符,一大堆不知道用途的文件 ...

  7. Some beautiful Progress Bars in WPF

    1.Better WPF Circular Progress Bar 2.Bending the WPF ProgressBar 3.A CIRCULAR PROGRESSBAR STYLE USIN ...

  8. MyBatis映射文件4(参数获取#{}和${}/select标签详解[返回类型为list])

    参数获取 之前我们都是采用#{}的方式进行参数传递,其实MyBatis还有另外的参数传递方式${} 使用方法相同,但是还是有很大区别的 这里做一个测试: <select id="get ...

  9. Spring JDBC模版以及三种数据库连接池的使用

    jar包版本有点乱,直接忽略版本号,将就一下. 这里引了aop包是因为在spring3版本之后用模版对数据库库操作时会出现问题,但是不会报错,也没有提示. 所以这里直接引入,以及之后会用到的DBCP与 ...

  10. vue 思維導圖

    vue概念:vue是一個輕量級的javascript庫:是一種漸進式的框架:vue可以實現數據視圖雙向綁定. vue基礎語法:實例化.條件.循環 vue重頭戲:動畫.組件.過濾.ajax.自定義組件. ...