(2017北大特优)在$\Delta ABC$中,$cos A+\sqrt{2}cos B+\sqrt{2}cos C$的最大值____


解答 :2
$cos A+\sqrt{2}cos B+\sqrt{2}cos C$

$=cos A+2\sqrt{2}cos\dfrac{B+C}{2}cos\dfrac{B-C}{2}\le1-2sin^2\dfrac{A}{2}+2\sqrt{2}sin\dfrac{A}{2}\le2$

提示:$p\cos\alpha+q\cos\beta+r\cos\gamma\le\dfrac{1}{2}\sum\limits_{cyc}\dfrac{qr}{p}$
嵌入不等式:$$2yzcosA+2zxcosB+2xycosC\le x^2+y^2+z^2$$中令$(x,y,z)=(\sqrt{\dfrac{qr}{p}},\sqrt{\dfrac{rp}{q}},\sqrt{\dfrac{pq}{r}})$即得.

MT【287】余弦的线性组合的更多相关文章

  1. MT【34】正余弦的正整数幂次快速表示成正余弦的线性组合

    问题:如何快速把$cos^4xsin^3x$表示成正弦,余弦的线性组合? 分析:利用牛顿二项式展开以下表达式: 再利用欧拉公式$e^{i\theta}=cos\theta+isin\theta$ 比如 ...

  2. MT【187】余弦的线性组合

    已知$\alpha+\beta+\gamma=\pi,(\alpha,\beta,\gamma\ge0)$ 求:$3\cos\alpha+4\cos\beta+5\cos\gamma$的最大值____ ...

  3. 小波变换(wavelet transform)的通俗解释(一)

    小波变换 小波,一个神奇的波,可长可短可胖可瘦(伸缩平移),当去学习小波的时候,第一个首先要做的就是回顾傅立叶变换(又回来了,唉),因为他们都是频率变换的方法,而傅立叶变换是最入门的,也是最先了解的, ...

  4. MT【300】余弦的三倍角公式

    2017清华大学THUSSAT附加学科测试数学(二测)$\cos^5\dfrac{\pi}{9}+\cos^5\dfrac{5\pi}{9}+\cos^5\dfrac{7\pi}{9}$ 的值为___ ...

  5. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  6. 287. Find the Duplicate Number hard

    287. Find the Duplicate Number   hard http://www.cnblogs.com/grandyang/p/4843654.html 51. N-Queens h ...

  7. Atitti knn实现的具体四个距离算法 欧氏距离、余弦距离、汉明距离、曼哈顿距离

    Atitti knn实现的具体四个距离算法  欧氏距离.余弦距离.汉明距离.曼哈顿距离 1. Knn算法实质就是相似度的关系1 1.1. 文本相似度计算在信息检索.数据挖掘.机器翻译.文档复制检测等领 ...

  8. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  9. C#——Dictionary<TKey, TValue> 计算向量的余弦值

    说明:三角函数的余弦值Cos我想,每个学计算机的理工人都知道,但是真的明白它的用途,我也是刚明白.每个人在初中或者高中的时候,都有这么个疑惑,学三角函数干什么用的?很直白的答案就是考试用的.而且当时的 ...

随机推荐

  1. sql定时备份

    老规矩,直接上代码: ) set @name='C:\Backup\MyStudy_'+ ),)+'.bak' BACKUP DATABASE[MyStudy]TO DISK=@name WITH N ...

  2. rest-framework解析器,url控制,分页,响应器,渲染器,版本控制

    解析器 1.json解析器 发一个json格式的post请求.后台打印: request_data---> {'title': '北京折叠'} request.POST---> <Q ...

  3. JavaScript对象访问器属性

    对象访问器就是setter和getter,他们的作用就是 提供另外一种方法来获取或者设置对象的属性值, 并且在获取和设置的时候,可以用一定的其他操作. 看下面代码: <script> va ...

  4. 初次启动hive,解决 ls: cannot access /home/hadoop/spark-2.2.0-bin-hadoop2.6/lib/spark-assembly-*.jar: No such file or directory问题

    >>提君博客原创  http://www.cnblogs.com/tijun/  << 刚刚安装好hive,进行第一次启动 提君博客原创 [hadoop@ltt1 bin]$ ...

  5. Golang的md5 hash计算

    Golang计算md5值的方法都是接收byte型slice([]byte).而且使用习惯上也觉得略奇怪. 看了好几个例子才看懂. 感觉Golang标准库在设计这些模块的时候,都会考虑使用带New关键字 ...

  6. ArcGIS DeskTop 10.2 的安装与破解

    ArcGIS DeskTop 10.2套件作为一组常用的ArcGIS软件为我们提供了对地图原始数据进行加工以及各种操作,通过这组软件我们能够很好地定制我们最终的地图样式,但是更多的时候我们需要对这组软 ...

  7. Java多线程4:Thread中的静态方法

    一.Thread类中的静态方法 Thread类中的静态方法是通过Thread.方法名来调用的,那么问题来了,这个Thread指的是哪个Thread,是所在位置对应的那个Thread嘛?通过下面的例子可 ...

  8. Lodop文本项相对于文本框居中 两端对齐

    Lodop中ADD_PRINT_TEXT默认内容是相对于文本框居左的,如果想要设置相对于文本框居中,可用如下语句.还有一种是两端对齐,可以让内容的两端阿和文本框的最左和最右端对齐,文本项内容布满文本框 ...

  9. Spring Boot 构建电商基础秒杀项目 (十二) 总结 (完结)

    SpringBoot构建电商基础秒杀项目 学习笔记 系统架构 存在问题 如何发现容量问题 如何使得系统水平扩展 查询效率低下 活动开始前页面被疯狂刷新 库存行锁问题 下单操作步骤多,缓慢 浪涌流量如何 ...

  10. Js 中一系列宽度和高度的学习

    在学习元素一系列宽度和高度之前,我们先来看一个平时开发中几乎不会遇到的问题,那就是html文档声明<!DOCTYPE html> 确实会对元素的宽高产生影响.几乎不会遇到,是因为我们在写h ...