Appscanner实验还原code3
# Author: Baozi
#-*- codeing:utf-8 -*-
import _pickle as pickle
from sklearn import ensemble
import random
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report, \
confusion_matrix
import numpy as np ##########
########## # TRAINING_PICKLE = 'motog-old-65-withnoise-statistical.p' # 1a
TRAINING_PICKLE = 'trunc-dataset1a-noisefree-statistical.p' # 1a
# TESTING_PICKLE = 'motog-new-65-withnoise-statistical.p' # 2
TESTING_PICKLE = 'trunc-dataset2-noisefree-statistical.p' # print('Loading pickles...')
trainingflowlist = pickle.load(open(TRAINING_PICKLE, 'rb'), encoding='iso-8859-1')
testingflowlist = pickle.load(open(TESTING_PICKLE, 'rb'), encoding='iso-8859-1')
print('Done...')
print('') print('Training with ' + TRAINING_PICKLE + ': ' + str(len(trainingflowlist)))
print('Testing with ' + TESTING_PICKLE + ': ' + str(len(testingflowlist)))
print('') for THR in range(10): p = []
r = []
f = []
a = []
c = [] for i in range(5):
print(i)
########## PREPARE STUFF
trainingexamples = []
classifier = ensemble.RandomForestClassifier()
classifier2 = ensemble.RandomForestClassifier() ########## GET FLOWS
for package, time, flow in trainingflowlist:
trainingexamples.append((flow, package))
# print('') ########## SHUFFLE DATA to ensure classes are "evenly" distributed
random.shuffle(trainingexamples) ########## TRAINING PART 1
X1_train = []
y1_train = []
#####################################################
for flow, package in trainingexamples[:int(float(len(trainingexamples)) / 2)]:
X1_train.append(flow)
y1_train.append(package) # print('Fitting classifier...')
classifier.fit(X1_train, y1_train)
# print('Classifier fitted!')
# print('' ########## TRAINING PART 2 (REINFORCEMENT)
X2_train = []
y2_train = []
tmpx_train = []
tmpy_train = [] count = 0
count1 = 0
count2 = 0 ###############################################
for flow, package in trainingexamples[int(float(len(trainingexamples)) / 2):]:
# flow = np.array(flow).reshape(1,-1)
# tmp.append(flow)
tmpx_train.append(flow)
tmpy_train.append(package) predictions = classifier.predict(tmpx_train)
#print(type(predictions))#<class 'numpy.ndarray'>
#print(predictions[0])#com.myfitnesspal.android-auto.csv
for flow, package in trainingexamples[int(float(len(trainingexamples)) / 2):]:
X2_train.append(flow)
prediction = predictions[count] if (prediction == package):
y2_train.append(package)
count1 += 1
else:
y2_train.append('ambiguous')
count2 += 1
count += 1
print("Step Finished!!!!!!!!!!!")
# print(count1)
# print(count2) # print('Fitting 2nd classifier...')
classifier2.fit(X2_train, y2_train)
# print('2nd classifier fitted!'
# print('' ########## TESTING threshold = float(THR) / 10 X_test = []
y_test = []
tmpx_test = []
tmpy_test = []
count = 0
totalflows = 0
consideredflows = 0 for package, time, flow in testingflowlist:
tmpx_test.append(flow)
tmpy_test.append(package) predictionss = classifier2.predict(tmpx_test)#此时的分类器可以预测带有ambiguous标签的样本
prediction_proba = classifier2.predict_proba(tmpx_test)#此时的分类器可以预测带有ambiguous标签的样本
#print(type(prediction_proba))#<class 'numpy.ndarray'>
print(prediction_proba[0]) for package, time, flow in testingflowlist:
prediction = predictionss[count]
if (prediction != 'ambiguous'):
prediction_probability = max(prediction_proba[0])
totalflows += 1 if (prediction_probability >= threshold):
consideredflows += 1 X_test.append(flow)
y_test.append(package)
count += 1 y_pred = classifier2.predict(X_test) p.append(precision_score(y_test, y_pred, average="macro") * 100)
r.append(recall_score(y_test, y_pred, average="macro") * 100)
f.append(f1_score(y_test, y_pred, average="macro") * 100)
a.append(accuracy_score(y_test, y_pred) * 100)
c.append(float(consideredflows) * 100 / totalflows) print('Threshold: ' + str(threshold))
print(np.mean(p))
print(np.mean(r))
print(np.mean(f))
print(np.mean(a))
print(np.mean(c))
print('')
Appscanner实验还原code3的更多相关文章
- Appscanner实验还原code2
import _pickle as pickle from sklearn import svm, ensemble import random from sklearn.metrics import ...
- Appscanner实验还原code1
import _pickle as pickle from sklearn import svm, ensemble import random from sklearn.metrics import ...
- 11.2.0.4rac service_name参数修改
环境介绍 )客户环境11. 两节点 rac,集群重启后,集群资源一切正常,应用cs架构,连接数据库报错,提示连接对象不存在 )分析报错原因,连接数据库方式:ip:Port/service_name方式 ...
- RAC环境修改参数生效测试
本篇文档--目的:实验测试在RAC环境下,修改数据库参数与单实例相比,需要注意的地方 --举例说明,在实际生产环境下,以下参数很可能会需要修改 --在安装数据库完成后,很可能没有标准化,初始化文档,没 ...
- vsftp -samba-autofs
摘要: 1.FTP文件传输协议,PAM可插拔认证模块,TFTP简单文件传输协议. 注意:iptables防火墙管理工具默认禁止了FTP传输协议的端口号 2.vsftpd服务程序三种认证模式?三种认证模 ...
- 【故障处理】ORA-12162 错误的处理
[故障处理]ORA-12162: TNS:net service name is incorrectly specified 一.1 场景 今天拿到一个新的环境,可是执行sqlplus / as s ...
- SDUT OJ 数据结构实验之二叉树四:(先序中序)还原二叉树
数据结构实验之二叉树四:(先序中序)还原二叉树 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem ...
- SDUT 3343 数据结构实验之二叉树四:还原二叉树
数据结构实验之二叉树四:还原二叉树 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 给定一棵 ...
- SDUT-3343_数据结构实验之二叉树四:(先序中序)还原二叉树
数据结构实验之二叉树四:(先序中序)还原二叉树 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 给定一棵二叉树的先序遍历 ...
随机推荐
- UVA12558-Efyptian Fractions(HARD version)(迭代加深搜索)
Problem UVA12558-Efyptian Fractions(HARD version) Accept:187 Submit:3183 Time Limit: 3000 mSec Pro ...
- 【转】怎么给javascript + div编辑框光标位置插入表情文字等?
最近刚好碰到这个问题,虽然离提出问题已经过了半年了,本着前人栽树后人乘凉的精神,还是回答一下.效果: &amp;amp;lt;img src="https://pic2.zh ...
- 001_HTTP参数中Etag的重要性
在研究tornado时,有个Etag比较好奇,从网上查询摘录如下:
- linux命令之df
功能:查看文件系统的磁盘空间使用情况 常用选项: -a 包含虚拟文件系统 -h 可易读单位显示 -i 显示 inode 信息而非块使用量 -k 1K 块的数量 -t 只显示指定文件系统为指定类型的信息 ...
- python3.6在linux持久运行django
最近线上运行一个OnlineJudgeServer的项目,通过python manage.py runserver 0.0.0.0:8090运行,如果关闭当前窗口,实际就相当于关闭了这个进程. 之前说 ...
- .net core实践系列之短信服务-目录
前言 经过两周多的业余时间,终于把该系列的文章写完了.第一次写系列,可能部分关键点并没有覆盖到,如果有疑问的朋友可以随时反馈给我.另外也感谢在我发布文章时给予我方案建议与反馈源码BUG的朋友们.下面是 ...
- 来,看看MySQL 5.6, 5.7, 8.0的新特性
对于MySQL的历史,相信很多人早已耳熟能详,这里就不要赘述.下面仅从产品特性的角度梳理其发展过程中的里程碑事件. 1995年,MySQL 1.0发布,仅供内部使用. 1996年,MySQL 3.11 ...
- 从 0 到 1 实现 React 系列 —— 5.PureComponent 实现 && HOC 探幽
本系列文章在实现一个 cpreact 的同时帮助大家理顺 React 框架的核心内容(JSX/虚拟DOM/组件/生命周期/diff算法/setState/PureComponent/HOC/...) ...
- 关于 HTTP GET/POST 请求参数长度最大值的一个理解误区(转载)
1. Get方法长度限制 Http Get方法提交的数据大小长度并没有限制,HTTP协议规范没有对URL长度进行限制.这个限制是特定的浏览器及服务器对它的限制.下面就是对各种浏览器和服务器的最大处理能 ...
- Jenkins- job之间传参
前言: 本文介绍插件: Parameterized Trigger plugin的具体使用方法. 一.插件介绍 Parameterized Trigger plugin插件可以让你在构建完成时触发新的 ...