Appscanner实验还原code3
# Author: Baozi
#-*- codeing:utf-8 -*-
import _pickle as pickle
from sklearn import ensemble
import random
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report, \
confusion_matrix
import numpy as np ##########
########## # TRAINING_PICKLE = 'motog-old-65-withnoise-statistical.p' # 1a
TRAINING_PICKLE = 'trunc-dataset1a-noisefree-statistical.p' # 1a
# TESTING_PICKLE = 'motog-new-65-withnoise-statistical.p' # 2
TESTING_PICKLE = 'trunc-dataset2-noisefree-statistical.p' # print('Loading pickles...')
trainingflowlist = pickle.load(open(TRAINING_PICKLE, 'rb'), encoding='iso-8859-1')
testingflowlist = pickle.load(open(TESTING_PICKLE, 'rb'), encoding='iso-8859-1')
print('Done...')
print('') print('Training with ' + TRAINING_PICKLE + ': ' + str(len(trainingflowlist)))
print('Testing with ' + TESTING_PICKLE + ': ' + str(len(testingflowlist)))
print('') for THR in range(10): p = []
r = []
f = []
a = []
c = [] for i in range(5):
print(i)
########## PREPARE STUFF
trainingexamples = []
classifier = ensemble.RandomForestClassifier()
classifier2 = ensemble.RandomForestClassifier() ########## GET FLOWS
for package, time, flow in trainingflowlist:
trainingexamples.append((flow, package))
# print('') ########## SHUFFLE DATA to ensure classes are "evenly" distributed
random.shuffle(trainingexamples) ########## TRAINING PART 1
X1_train = []
y1_train = []
#####################################################
for flow, package in trainingexamples[:int(float(len(trainingexamples)) / 2)]:
X1_train.append(flow)
y1_train.append(package) # print('Fitting classifier...')
classifier.fit(X1_train, y1_train)
# print('Classifier fitted!')
# print('' ########## TRAINING PART 2 (REINFORCEMENT)
X2_train = []
y2_train = []
tmpx_train = []
tmpy_train = [] count = 0
count1 = 0
count2 = 0 ###############################################
for flow, package in trainingexamples[int(float(len(trainingexamples)) / 2):]:
# flow = np.array(flow).reshape(1,-1)
# tmp.append(flow)
tmpx_train.append(flow)
tmpy_train.append(package) predictions = classifier.predict(tmpx_train)
#print(type(predictions))#<class 'numpy.ndarray'>
#print(predictions[0])#com.myfitnesspal.android-auto.csv
for flow, package in trainingexamples[int(float(len(trainingexamples)) / 2):]:
X2_train.append(flow)
prediction = predictions[count] if (prediction == package):
y2_train.append(package)
count1 += 1
else:
y2_train.append('ambiguous')
count2 += 1
count += 1
print("Step Finished!!!!!!!!!!!")
# print(count1)
# print(count2) # print('Fitting 2nd classifier...')
classifier2.fit(X2_train, y2_train)
# print('2nd classifier fitted!'
# print('' ########## TESTING threshold = float(THR) / 10 X_test = []
y_test = []
tmpx_test = []
tmpy_test = []
count = 0
totalflows = 0
consideredflows = 0 for package, time, flow in testingflowlist:
tmpx_test.append(flow)
tmpy_test.append(package) predictionss = classifier2.predict(tmpx_test)#此时的分类器可以预测带有ambiguous标签的样本
prediction_proba = classifier2.predict_proba(tmpx_test)#此时的分类器可以预测带有ambiguous标签的样本
#print(type(prediction_proba))#<class 'numpy.ndarray'>
print(prediction_proba[0]) for package, time, flow in testingflowlist:
prediction = predictionss[count]
if (prediction != 'ambiguous'):
prediction_probability = max(prediction_proba[0])
totalflows += 1 if (prediction_probability >= threshold):
consideredflows += 1 X_test.append(flow)
y_test.append(package)
count += 1 y_pred = classifier2.predict(X_test) p.append(precision_score(y_test, y_pred, average="macro") * 100)
r.append(recall_score(y_test, y_pred, average="macro") * 100)
f.append(f1_score(y_test, y_pred, average="macro") * 100)
a.append(accuracy_score(y_test, y_pred) * 100)
c.append(float(consideredflows) * 100 / totalflows) print('Threshold: ' + str(threshold))
print(np.mean(p))
print(np.mean(r))
print(np.mean(f))
print(np.mean(a))
print(np.mean(c))
print('')
Appscanner实验还原code3的更多相关文章
- Appscanner实验还原code2
import _pickle as pickle from sklearn import svm, ensemble import random from sklearn.metrics import ...
- Appscanner实验还原code1
import _pickle as pickle from sklearn import svm, ensemble import random from sklearn.metrics import ...
- 11.2.0.4rac service_name参数修改
环境介绍 )客户环境11. 两节点 rac,集群重启后,集群资源一切正常,应用cs架构,连接数据库报错,提示连接对象不存在 )分析报错原因,连接数据库方式:ip:Port/service_name方式 ...
- RAC环境修改参数生效测试
本篇文档--目的:实验测试在RAC环境下,修改数据库参数与单实例相比,需要注意的地方 --举例说明,在实际生产环境下,以下参数很可能会需要修改 --在安装数据库完成后,很可能没有标准化,初始化文档,没 ...
- vsftp -samba-autofs
摘要: 1.FTP文件传输协议,PAM可插拔认证模块,TFTP简单文件传输协议. 注意:iptables防火墙管理工具默认禁止了FTP传输协议的端口号 2.vsftpd服务程序三种认证模式?三种认证模 ...
- 【故障处理】ORA-12162 错误的处理
[故障处理]ORA-12162: TNS:net service name is incorrectly specified 一.1 场景 今天拿到一个新的环境,可是执行sqlplus / as s ...
- SDUT OJ 数据结构实验之二叉树四:(先序中序)还原二叉树
数据结构实验之二叉树四:(先序中序)还原二叉树 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem ...
- SDUT 3343 数据结构实验之二叉树四:还原二叉树
数据结构实验之二叉树四:还原二叉树 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 给定一棵 ...
- SDUT-3343_数据结构实验之二叉树四:(先序中序)还原二叉树
数据结构实验之二叉树四:(先序中序)还原二叉树 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 给定一棵二叉树的先序遍历 ...
随机推荐
- 使用vue-cli脚手架创建项目
ue-cli 是一个官方发布 vue.js 项目脚手架,使用 vue-cli 可以快速创建 vue 项目. GitHub地址是:https://github.com/vuejs/vue-cli 一.安 ...
- 第1章 从开机加电到main函数之前的过程
主要讲解了80x86cpu在启动的时候时bios如何工作,以及如何最终转换到保护模式. 1.1 启动bios 80x86作为冯诺依曼结构下的cpu,工作模式也是取指执行,即cpu根据cs:ip寄存器的 ...
- PHPsql
下面员工3的薪水大于其主管的薪水,一条SQL找到薪水比下属低的主管 id username salary pid 1 a 3000 null 2 b 8000 null 3 c 5000 1 4 d ...
- ②---Java开发工具Eclipse安装配置
Java开发工具Eclipse安装及配置 以下将为大家介绍Java开发工具Eclipse安装及配置. 一.下载Eclipse安装文件 正所谓工欲善其事必先利其器,我们在开发java语言过程中同样需要依 ...
- JavaScript模块化思想之CommonJS、AMD、CMD、UMD
前一篇文章了解了什么是模块,这一篇就简单介绍一下如何定义并加载一个模块. 我所了解的三种模块加载方式分别是CommonJS.AMD和CMD 网上关于这三种模块加载方式讲解的文章很多,我就简单的做个介绍 ...
- Generative Adversarial Nets[EBGAN]
0. 背景 Junbo Zhao等人提出的"基于能量的GAN"网络,其将判别器视为一个能量函数而不需要明显的概率解释,该函数可以是一个可训练的损失函数.能量函数是将靠近真实数据流形 ...
- Wireshark抓包分析TCP 3次握手、4次挥手过程
Wireshark简介 更多有关Wireshark的教程.软件下载等,请见:http://www.52im.net/thread-259-1-1.html,本文只作简要介绍. 1Wireshark 是 ...
- Maven之profile实现多环境配置动态切换
一般的软件项目,在开发.测试及生产等环境下配置文件中参数是不同的.传统的做法是在项目部署的时候,手动修改或者替换这个配置文件.这样太麻烦了,我们可以用Maven的profile来解决这 ...
- 搭建SpringBoot+dubbo+zookeeper+maven框架(四)
今天我们完成框架的thymeleaf模板显示页面功能,页面的用户登陆,密码的AES加密解密,输错3次进行验证码验证功能,东西可能比较多,这个是我这两天在网上结合各种资源整合出来的,基本功能都已经实现, ...
- a2dp播放流程源码分析
之前分析了a2dp profile 的初始化的流程,这篇文章分析一下,音频流在bluedroid中的处理流程. 上层的音频接口是调用a2dp hal 里面的接口来进行命令以及数据的发送的. 关于控制通 ...