好久没写了,写一篇凑个数。

题目分析:

这题不难想,讲一下中国剩余定理怎么扩展。

考虑$$\left\{\begin{matrix}x \equiv a\pmod{b}\\ x \equiv c\pmod{d}\end{matrix}\right.$$

不难发现需要满足$gcd(b,d)|(c-a)$才有解。

结合后的模数一定是$lcm(b,d)$。然后扩展gcd合并就行了。

中间过程会超过$10^18$,需要快速乘。

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ; int n,m;
long long a[maxn],p[maxn],LP[maxn],d[maxn]; multiset<long long,greater<long long> > s; long long cut[maxn],minn;
long long st[maxn],f[maxn]; void init(){
s.clear();memset(st,,sizeof(st)); memset(f,,sizeof(f));
for(int i=;i<=m;i++) s.insert(d[i]);
for(int i=;i<=n;i++){
set<long long>::iterator it = s.lower_bound(a[i]);
if(it == s.end())it--; cut[i] = (*it);
s.erase(it); s.insert(LP[i]);
}
minn = ;
for(int i=;i<=n;i++) minn = max(minn,(long long)ceil((double)a[i]/cut[i]));
} long long exgcd(long long alpha,long long beta,long long &x,long long &y){
if(beta == ){x = ; y = ; return alpha;}
else{
long long res = exgcd(beta,alpha%beta,y,x);
y-=x*(alpha/beta);
return res;
}
} void read(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%lld",&a[i]);
for(int i=;i<=n;i++) scanf("%lld",&p[i]);
for(int i=;i<=n;i++) scanf("%lld",&LP[i]);
for(int i=;i<=m;i++) scanf("%lld",&d[i]);
} long long multi(long long alpha,long long beta,long long mod){
long long dt,bit = ,ans = ;
alpha %= mod; beta %= mod;
alpha += mod; beta += mod;
alpha %= mod; beta %= mod;
dt = alpha;
while(bit <= beta){
if(bit & beta){ans += dt; if(ans >= mod) ans -= mod;}
bit<<=;dt = (dt+dt); if(dt >= mod) dt -= mod;
}
return ans;
} int cntt = ;
void work(){
for(int i=;i<=n;i++){
long long hd = exgcd(cut[i],p[i],st[i],f[i]);
if(a[i] % hd != ){puts("-1");return;}
f[i] = p[i]/hd; st[i] %= f[i]; if(st[i] < ) st[i] += f[i];
st[i] = multi(st[i],a[i]/hd,f[i]); st[i] %= f[i];
}
for(int i=;i<=n;i++){
long long im = exgcd(f[i],f[i-],f[],f[]);
if((st[i]-st[i-])%im){
puts("-1");return;
}
long long um = f[i]/im*f[i-];
long long tf=; exgcd(f[i-],f[i],tf,f[]);
tf =multi(tf,(st[i]-st[i-])/im,um);
tf += (-tf/f[i])*f[i]; tf += f[i];
tf = (st[i-]+multi(tf,f[i-],um))%um;
if(tf < ) tf += um;
f[i] = um; st[i] = tf;
}
if(st[n] < minn){
st[n] += (minn-st[n])/f[n]*f[n];
}
printf("%lld\n",st[n]);
//fast multi
} int main(){
int Tmp; scanf("%d",&Tmp);
while(Tmp--){
cntt++;
read();
init();
work();
}
return ;
}

LOJ2721 [NOI2018] 屠龙勇士 【扩展中国剩余定理】的更多相关文章

  1. LOJ.2721.[NOI2018]屠龙勇士(扩展CRT 扩展欧几里得)

    题目链接 LOJ 洛谷 rank前3无压力(话说rank1特判打表有意思么) \(x*atk[i] - y*p[i] = hp[i]\) 对于每条龙可以求一个满足条件的\(x_0\),然后得到其通解\ ...

  2. 洛谷P4774 BZOJ5418 LOJ2721 [NOI2018]屠龙勇士(扩展中国剩余定理)

    题目链接: 洛谷 BZOJ LOJ 题目大意:这么长的题面,就饶了我吧emmm 这题第一眼看上去没法列出同余方程组.为什么?好像不知道用哪把剑杀哪条龙…… 仔细一看,要按顺序杀龙,所以获得的剑出现的顺 ...

  3. 扩展中国剩余定理学习笔记+模板(洛谷P4777)

    题目链接: 洛谷 题目大意:求同余方程组 $x\equiv b_i(mod\ a_i)$ 的最小正整数解. $1\leq n\leq 10^5,1\leq a_i\leq 10^{12},0\leq ...

  4. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  5. BZOJ5418[Noi2018]屠龙勇士——exgcd+扩展CRT+set

    题目链接: [Noi2018]屠龙勇士 题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一 ...

  6. [洛谷P4774] [NOI2018]屠龙勇士

    洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{* ...

  7. 扩展中国剩余定理 (exCRT) 的证明与练习

    原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...

  8. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  9. P4777 【模板】扩展中国剩余定理(EXCRT)

    思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...

随机推荐

  1. PHP实用代码片段(四)

    1. 删除文件夹内容 function Delete($path) { if (is_dir($path) === true) { $files = array_diff(scandir($path) ...

  2. Magic Stones CodeForces - 1110E (思维+差分)

    E. Magic Stones time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  3. 关于php,python,javascript文件或者模块导入引入的区别和联系

    前言: 我们经常看到编程语言之间,文件或者模块的引来引去的,但是他们在各个编程语言之间有什么区别和联系呢? 1.javascript (1).全局引入方式: <script src='xxxxx ...

  4. 培训班课程课时及费用管理系统V3.0,适合钢琴培训班、艺术培训班等

    联系QQ 564955427. ACM3.02 文件下载                    还有: 预收课时版 特点: 1. 适合主要业务是一对一课程和部分集体课培训的中小培训班(非连锁管理).考 ...

  5. 【转】Linux下cp: omitting directory `XXX'问题解决

    在linux系统中复制文件夹时提示如下: Shell代码 [root@idtp4 site-packages]# /site-packages/ cp: omitting directory ‘yag ...

  6. Python之列表

    一.列表的特点 列表也是一种数据类型 列表元素是有序的,有编号的 列表元素的下标从0开始 列表中的每一个值叫一个元素,编号叫下标(索引/角标): stu_name=['崔海龙','杨帆','lrx', ...

  7. JavaScript中的各种X,Y,Width,Height

    在JavaScript DOM编程中,会接触很多很多很多关于浏览器的宽高,屏幕的宽高,元素的各种宽高,以及鼠标的坐标等,常常让人搞混.索性就写篇博客整理一下. case 1:鼠标的坐标 获取鼠标的坐标 ...

  8. # 【Python3练习题 003】一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少?

    # -------------------------------------------------## 所谓的“完全平方数”,就是开完根号仍然是整数.## 数学渣是这么思考的:假设这个数 i 在1 ...

  9. 解读event.returnValue和return false

    前言 首先我们要清楚returnValue是IE的一个属性,如果设置了该属性,它的值比事件句柄的返回值优先级要高,把它的值设置为false,可以取消发生事件源元素的默认动作:return false就 ...

  10. day 7-6 GIL,死锁,递归锁与信号量,Event,queue,

    摘要: 1.死锁与递归锁 2.信号量 3.Event 4.Timer 5.GIL 6.Queue 7.什么时候该用多线程和多进程 一. 死锁与递归锁 所谓死锁: 是指两个或两个以上的进程或线程在执行过 ...