子串 (substring.cpp/c/pas)   题目链接

【问题描述】
有两个仅包含小写英文字母的字符串 A 和 B。现在要从字符串 A 中取出 k 个 互不重叠 的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一
个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出的位置不同也认为是不同的方案 。
【输入格式】
输入文件名为 substring.in。
第一行是三个正整数 n,m,k,分别表示字符串 A 的长度,字符串 B 的长度,以及问题描述中所提到的 k,每两个整数之间用一个空格隔开。
第二行包含一个长度为 n 的字符串,表示字符串 A。
第三行包含一个长度为 m 的字符串,表示字符串 B。
【输出格式】
输出文件名为 substring.out。
输出共一行,包含一个整数,表示所求方案数。 由于答案可能很大,所以这里要求对输出答案对 1,000,000,007 取模 的结果。
【输入输出样例 1】
substring.in
6 3 1
aabaab
aab
substring.out
2
【输入输出样例 2】
substring.in
6 3 2
aabaab
aab
substring.out
7
【输入输出样例 3】
substring.in
6 3 3
aabaab
aab
substring.out
7

【题解】
NOIP2015Day2T2
一道好好的DP题
我们用dp[i][j][k]表示在B串中匹配i个,在A串中匹配到的位置为j,共使用k个子串的方案总数,则dp[i][j][k]=Σdp[i-1][j'][k-1] +dp[i-1][j-1][k]
那么,对于Σ可以用前缀和优化,这样的时间就可以卡进去了,但是空间还是要炸,所以我们采用滚动数组来优化空间即可。详见代码。

#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
const int N=+,M=+;
const int mod=1e9+;
char s1[N],s2[M];
int n,m,K;
int dp[][N][M],sum[][N][M];
//dp[i][j][k]=Σdp[i-1][j'][k-1](1<=j'<=j-1) +dp[i-1][j-1][k]
int main(){
scanf("%d%d%d%s%s",&n,&m,&K,s1+,s2+);
memset(dp,,sizeof dp);
memset(sum,,sizeof sum);
int I=,J=;
for (int i=;i<=n;i++){
if (s2[]==s1[i])
dp[][i][]=;
sum[][i][]=sum[][i-][]+dp[][i][];
}
for (int i=;i<=m;i++,I^=,J^=){
memset(dp[J],,sizeof dp[J]);
memset(sum[J],,sizeof sum[J]);
for (int j=;j<=n;j++){
if (s2[i]!=s1[j])
continue;
for (int k=;k<=K;k++)
if (j>=)
dp[J][j][k]=(sum[I][j-][k-]+dp[I][j-][k])%mod;
else
dp[J][j][k]=dp[I][j-][k];
}
for (int k=;k<=K;k++)
for (int j=;j<=n;j++)
sum[J][j][k]=(sum[J][j-][k]+dp[J][j][k])%mod;
}
printf("%d",sum[I][n][K]);
return ;
}

Vijos1982 NOIP2015Day2T2 子串 substring 动态规划的更多相关文章

  1. Luogu 2679 子串 (动态规划)

    Luogu 2679 NOIP 2015 子串 (动态规划) Description 有两个仅包含小写英文字母的字符串 A 和 B.现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k ...

  2. [LeetCode] 647. 回文子串 ☆☆☆(最长子串、动态规划、中心扩展算法)

    描述 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被计为是不同的子串. 示例 1: 输入: "abc" ...

  3. 【LeetCode】最长回文子串【动态规划或中心扩展】

    给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad"输出: "bab"注意: " ...

  4. [LeetCode] 5. 最长回文子串 ☆☆☆(最长子串、动态规划)

    最长回文子串 (动态规划法.中心扩展算法) https://leetcode-cn.com/problems/longest-palindromic-substring/solution/xiang- ...

  5. [vijos1982][NOIP2015]子串

    Description 有两个仅包含小写英文字母的字符串和.现在要从字符串中取出个互不重叠的非空子串,然后把这个子串按照其在字符串中出现的顺序依次连接起来得到一个新的字符串,请问有多少种方案可以使得这 ...

  6. [NOIP2015] 子串substring 题解

    [题目描述] 有两个仅包含小写英文字母的字符串A和B.现在要从字符串A中取出k个互不重叠的非空子串,然后把这k个子串按照其在字符串A中出现的顺序依次连接起来得到一个新的字符串,请问有多少种方案可以使得 ...

  7. 【NOIP2015】子串(动态规划)

    题目戳我 题解 很简单的一道题... 看来那时候还是我太菜了... 设f[i][j][k][0/1]表示在第一个串中的位置i,匹配到了位置j,一共分了k段,0/1表示上一个位置是否在某一段中 转移就很 ...

  8. NOIP2015Day2T2子串(字符串dp)

    又被“if(a=b)”坑了QAQ...写C++还是得开Warning,这么久了pascal还没改过来咋回事啊QWQ 题目大意就不说了OWO 网上的题解都不怎么看得懂啊...好像写得都很乱?还是我太sb ...

  9. 领扣-5 最长回文子串 Longest Palindromic Substring MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

随机推荐

  1. ubuntu18.04安装xmind8

    1.先去官网下载:https://www.xmind.net/download/xmind8/ 2.默认下载到/home/guojihai/下载/目录下然后把xmind-8-update8-linux ...

  2. Json 文件中value的基本类型

    在Json中,value的类型只能是以下几种: 1.字符串 2.数字 3.true 或者 false (注意,和字符串不同,没有双引号包裹) 4.null

  3. ES的Query、Filter、Metric、Bucketing使用详解

    由于笔者在实际项目仅仅将ES用作索引数据库,并没有深入研究过ES的搜索功能.而且鉴于笔者的搜索引擎知识有限,本文将仅仅介绍ES简单(非全文)的查询API. 笔者原本打算在本文中介绍聚合API的内容,但 ...

  4. Math中的floor,round和ceil方法总结

    floor向下取整,返回不大于的最大整数  Math.floor(1.4)=1.0ceil向上取整,返回不小于的最小整数  Math.ceil(1.4)=2.0round 四舍五入,将原来的数字加入0 ...

  5. swift 学习- 23 -- 扩展

    // 扩展 就是为一个已有的 类, 结构体, 枚举, 或者 协议类型添加新功能, 这包括在没有权限获取 原始代码的情况下 扩展类型的能力 (即 逆向建模), 扩展和 OC 中的分类类似, (与 OC ...

  6. Windows&Word 常用快捷键

    Win:显示开始菜单 Win + E:打开文件管理器 Win + D:显示桌面 Win + L:锁定计算机 Win + I:打开设置 Win + M:最小化所有窗口 Alt + F4:1.用来关闭当前 ...

  7. /etc/rc.d/init.d/iptables: No such file or directory 错误原因

    注:本文转载自cnblogs:一天学点的文章</etc/rc.d/init.d/iptables: No such file or directory 错误原因> RedHat Enter ...

  8. Redis事务概念

    redis事务与监控 Author:SimpleWu GitHub-redis 在redis中它的事务与批处理非常相似 Redis中的事务(transaction)是一组命令的集合.事务同命令一样都是 ...

  9. Matplotlib模块:绘图和可视化

    一.简单介绍Matplotlib 1.Matplotlib是一个强大的Python绘图和数据可视化的工具包 2.安装方法:pip install matplotlib 3.引用方法:import ma ...

  10. mysql中有多种存储引擎,每种引擎都有自己的特色

    mysql中有多种存储引擎,每种引擎都有自己的特色. 用途: MyISAM:快读, Memory:内存数据, InnoDB:完整的事务支持 锁: MyISAM:全表锁定, Memory:全表锁定, I ...