一.简介

  Spark的自定义udf和udaf是为了提供函数扩展,Spark本身提供了几十上百个算子,在数据分析的各个方面的常用计算方式都有提到,但计算场景千差万别,算子也不会面面俱到,如何在单机或集群上定义函数就是要重点关注的地方。特别是在集群模式中,函数需要使用spark注册才能在各个节点上使用,因此,udf和udaf就显得比较重要了。

二.设置日志级别

Logger.getLogger("org").setLevel(Level.WARN) // 设置日志级别为WARN

三.创建spark入口

val spark = SparkSession.builder().appName("UdfUdaf").master("local[2]").getOrCreate()
val sc = spark.sparkContext
val sqlContext = spark.sqlContext

四.创建测试数据

val userData = Array(
"2015,11,www.baidu.com", "2016,14,www.google.com",
"2017,13,www.apache.com", "2015,21,www.spark.com",
"2016,32,www.hadoop.com", "2017,18,www.solr.com",
"2017,14,www.hive.com"
) val userDataRDD = sc.parallelize(userData) // 转化为RDD
val userDataType = userDataRDD.map(line => {
val Array(age, id, url) = line.split(",")
Row(age, id.toInt, url)
})
val structTypes = StructType(Array(
StructField("age", StringType, true),
StructField("id", IntegerType, true),
StructField("url", StringType, true)
))
// RDD转化为DataFrame
val userDataFrame = sqlContext.createDataFrame(userDataType,structTypes)
// 注冊临时表
userDataFrame.createOrReplaceTempView("udf")

五.自定义udf并测试

def isAdult(age : Int) ={
if(age > 18){
true
}else{
false
}
}
// 注册udf(方式一)
spark.udf.register("isAdult_1", (id : Int) => if(id > 18) true else false) // 匿名函数
// 注册udf(方式二)
spark.udf.register("isAdult_2", isAdult _) // 预先定义好的普通函数
// 验证udf方式一
val result_1 = sqlContext.sql("select * from udf where isAdult_1(udf.id)")
result_1.show(false)
// 验证udf方式二
val result_2 = sqlContext.sql("select * from udf where isAdult_2(udf.id)")
result_2.show(false)

六.执行结果

  

七.自定义udaf并测试

object AverageUserDefinedAggregateFunction extends UserDefinedAggregateFunction{
//聚合函数输入数据结构
override def inputSchema:StructType = StructType(StructField("input", LongType) :: Nil)
//缓存区数据结构
override def bufferSchema: StructType = StructType(StructField("sum", LongType) :: StructField("count", LongType) :: Nil)
//结果数据结构
override def dataType : DataType = DoubleType
// 是否具有唯一性
override def deterministic : Boolean = true
//初始化
override def initialize(buffer : MutableAggregationBuffer) : Unit = {
buffer(0) = 0L
buffer(1) = 0L
}
//数据处理 : 必写,其它方法可选,使用默认
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
if(input.isNullAt(0)) return
buffer(0) = buffer.getLong(0) + input.getLong(0) //求和
buffer(1) = buffer.getLong(1) + 1 //计数
}
//合并
override def merge(bufferLeft: MutableAggregationBuffer, bufferRight: Row): Unit ={
bufferLeft(0) = bufferLeft.getLong(0) + bufferRight.getLong(0)
bufferLeft(1) = bufferLeft.getLong(1) + bufferRight.getLong(1)
}
//计算结果
override def evaluate(buffer: Row): Any = buffer.getLong(0).toDouble / buffer.getLong(1)
}
    /**
* 测试udaf
*/
spark.udf.register("average", AverageUserDefinedAggregateFunction)
spark.sql("select count(*) count,average(age) avg_age from udf").show(false)

八.执行结果

  

Spark之UDAF的更多相关文章

  1. Spark SQL UDAF示例

    UDAF:用户自定义聚合函数 Scala 2.10.7,spark 2.0.0 package UDF_UDAF import java.util import org.apache.spark.Sp ...

  2. Spark笔记之使用UDAF(User Defined Aggregate Function)

    一.UDAF简介 先解释一下什么是UDAF(User Defined Aggregate Function),即用户定义的聚合函数,聚合函数和普通函数的区别是什么呢,普通函数是接受一行输入产生一个输出 ...

  3. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十五)Spark编写UDF、UDAF、Agg函数

    Spark Sql提供了丰富的内置函数让开发者来使用,但实际开发业务场景可能很复杂,内置函数不能够满足业务需求,因此spark sql提供了可扩展的内置函数. UDF:是普通函数,输入一个或多个参数, ...

  4. Spark Sql的UDF和UDAF函数

    Spark Sql提供了丰富的内置函数供猿友们使用,辣为何还要用户自定义函数呢?实际的业务场景可能很复杂,内置函数hold不住,所以spark sql提供了可扩展的内置函数接口:哥们,你的业务太变态了 ...

  5. spark编写UDF和UDAF

    UDF: 一.编写udf类,在其中定义udf函数 package spark._sql.UDF import org.apache.spark.sql.functions._ /** * AUTHOR ...

  6. spark自定义函数之——UDAF使用详解及代码示例

    UDAF简介 UDAF(User Defined Aggregate Function)即用户定义的聚合函数,聚合函数和普通函数的区别是什么呢,普通函数是接受一行输入产生一个输出,聚合函数是接受一组( ...

  7. 【转】Spark-Sql版本升级对应的新特性汇总

    Spark-Sql版本升级对应的新特性汇总 SparkSQL的前身是Shark.由于Shark自身的不完善,2014年6月1日Reynold Xin宣布:停止对Shark的开发.SparkSQL抛弃原 ...

  8. 转:Spark User Defined Aggregate Function (UDAF) using Java

    Sometimes the aggregate functions provided by Spark are not adequate, so Spark has a provision of ac ...

  9. Spark SQL 用户自定义函数UDF、用户自定义聚合函数UDAF 教程(Java踩坑教学版)

    在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等 UDAF( ...

随机推荐

  1. 数据量你造吗-JAVA分页

    原创地址:   http://www.cnblogs.com/Alandre/  (泥沙砖瓦浆木匠),需要转载的,保留下! Thanks 学习的心态第一,解行要相应.其实<弟子规>在“余力 ...

  2. 你真的懂redis的数据结构了吗?redis内部数据结构和外部数据结构揭秘

    Redis有哪些数据结构? 字符串String.字典Hash.列表List.集合Set.有序集合SortedSet. 很多人面试时都遇到过这种场景吧? 其实除了上面的几种常见数据结构,还需要加上数据结 ...

  3. [转]Redis配置文件详解

    本文转自http://blog.csdn.net/neubuffer/article/details/17003909 redis是一款开源的.高性能的键-值存储(key-value store),和 ...

  4. sshfs基于ssh挂载远程目录

    为了像本地一样访问远程主机上的目录,通常我们会在远程主机上使用nfs来导出目录,并在本地主机上mount这个nfs文件系统.如果是windows系统,则使用cifs或samba的方式来访问. 但可能我 ...

  5. MySQL中间件之ProxySQL(3):Admin管理接口

    返回ProxySQL系列文章:http://www.cnblogs.com/f-ck-need-u/p/7586194.html 1.ProxySQL的Admin管理接口 当ProxySQL启动后,将 ...

  6. [转]Angular引入第三方库

    本文转自: https://blog.csdn.net/yuzhiqiang_1993/article/details/71215232 版权声明:本文为博主原创文章,转载请注明地址.如果文中有什么纰 ...

  7. ajax实现跨域访问

    ajax跨域访问是一个老生畅谈的问题啦,网上解决方法很多,discuz用的p3p协议,有兴趣的朋友可以了解下,比较常用的是JSONP方法,貌似目前这种方法只支持GET方式,不如POST方式安全. 即使 ...

  8. php中的for 和foreach性能对比

    总体来说,如果数据库过几十万了,才能看出来快一点还是慢一点,如果低于10万的循环,就不用测试了,两者性差异不明显.但是我还是推荐用foreach.循环数字数组时,for需要事先count($arr)计 ...

  9. python学习笔记(一)、列表和元祖

    该一系列python学习笔记都是根据<Python基础教程(第3版)>内容所记录整理的 1.通用的序列操作 有几种操作适用于所有序列,包括索引.切片.相加.相乘和成员资格检查.另外,Pyt ...

  10. 解决org.hibernate.HibernateException: identifier of an instance of com.ahd.entity.Order was altered from2 to 0

    错误信息 严重: Servlet.service() for servlet [springmvc] in context with path [/order] threw exception [Re ...