UVA 11134 - Fabled Rooks(贪心+优先队列)
We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the following restrictions
- The i-th rook can only be placed within the rectangle given by its left-upper corner (xli, yli) and its right-lower corner (xri, yri), where 1 ≤ i ≤ n, 1 ≤ xli ≤ xri ≤ n, 1 ≤ yli ≤ yri ≤ n.
- No two rooks can attack each other, that is no two rooks can occupy the same column or the same row.
The input consists of several test cases. The first line of each of them contains one integer number, n, the side of the board. n lines follow giving the rectangles where the rooks can be placed as described above. The i-th line among them gives xli, yli, xri, and yri. The input file is terminated with the integer `0' on a line by itself.
Your task is to find such a placing of rooks that the above conditions are satisfied and then output n lines each giving the position of a rook in order in which their rectangles appeared in the input. If there are multiple solutions, any one will do. Output IMPOSSIBLE if there is no such placing of the rooks.
Sample input
8
1 1 2 2
5 7 8 8
2 2 5 5
2 2 5 5
6 3 8 6
6 3 8 5
6 3 8 8
3 6 7 8
8
1 1 2 2
5 7 8 8
2 2 5 5
2 2 5 5
6 3 8 6
6 3 8 5
6 3 8 8
3 6 7 8
0
Output for sample input
1 1
5 8
2 4
4 2
7 3
8 5
6 6
3 7
1 1
5 8
2 4
4 2
7 3
8 5
6 6
3 7
#include <stdio.h>
#include <string.h>
#include <queue>
#include <algorithm>
using namespace std; const int N = 5005; int n;
struct Car {
int xl, xr, yl, yr;
int px, py, id;
} car[N]; bool cmp1(Car a, Car b) {
if (a.yl != b.yl)
return a.yl < b.yl;
return a.yr < b.yr;
} bool cmp2(Car a, Car b) {
if (a.xl != b.xl)
return a.xl < b.xl;
return a.xr < b.xr;
} bool cmp3(Car a, Car b) {
return a.id < b.id;
} void init() {
for (int i = 0; i < n; i ++) {
scanf("%d%d%d%d", &car[i].xl, &car[i].yl, &car[i].xr, &car[i].yr);
car[i].id = i;
}
} bool solve() {
sort(car, car + n, cmp1);
for (int i = 1; i <= n; i ++) {
if (car[i - 1].yl > i || car[i - 1].yr < i) return false;
car[i - 1].py = i;
}
sort(car, car + n, cmp2);
for (int i = 1; i <= n; i ++) {
if (car[i - 1].xl > i || car[i - 1].xr < i) return false;
car[i - 1].px = i;
}
sort(car, car + n, cmp3);
return true;
} int main() {
while (~scanf("%d", &n) && n) {
init();
if (solve()) {
for (int i = 0; i < n; i ++)
printf("%d %d\n", car[i].px, car[i].py);
}
else printf("IMPOSSIBLE\n");
}
return 0;
}
UVA 11134 - Fabled Rooks(贪心+优先队列)的更多相关文章
- UVA - 11134 Fabled Rooks[贪心 问题分解]
UVA - 11134 Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n × n board subject to t ...
- UVA 11134 Fabled Rooks 贪心
题目链接:UVA - 11134 题意描述:在一个n*n(1<=n<=5000)的棋盘上放置n个车,每个车都只能在给定的一个矩形里放置,使其n个车两两不在同一行和同一列,判断并给出解决方案 ...
- uva 11134 - Fabled Rooks(问题转换+优先队列)
题目链接:uva 11134 - Fabled Rooks 题目大意:给出n,表示要在n*n的矩阵上放置n个车,并且保证第i辆车在第i个区间上,每个区间给出左上角和右小角的坐标.另要求任意两个车之间不 ...
- UVA 11134 Fabled Rooks
贪心+优先队列+问题分解 对x,y 分开处理 当 xl<cnt(当前处理行)时,不能简单的选择cnt,而是应该让xl=cnt 并重新加入优先队列.(y的处理同上) #include <io ...
- UVa 11134 - Fabled Rooks 优先队列,贪心 难度: 0
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- uva 11134 fabled rooks (贪心)——yhx
We would like to place n rooks, 1 n 5000, on a n nboard subject to the following restrictions• The i ...
- UVa 11134 Fabled Rooks(贪心)
题目链接 题意 在n*n的棋盘上的n个指定区间上各放1个'车’ , 使他们相互不攻击(不在同行或同列),输出一种可能的方法. 分析 每行每列都必须放车,把行列分开看,若行和列同时有解,则问题有解. ...
- UVA 11134 Fabled Rooks(贪心的妙用+memset误用警示)
题目链接: https://cn.vjudge.net/problem/UVA-11134 /* 问题 输入棋盘的规模和车的数量n(1=<n<=5000),接着输入n辆车的所能在的矩阵的范 ...
- UVa 11134 Fabled Rooks (贪心+问题分解)
题意:在一个n*n的棋盘上放n个车,让它们不互相攻击,并且第i辆车在给定的小矩形内. 析:说实话,一看这个题真是没思路,后来看了分析,原来这个列和行是没有任何关系的,我们可以分开看, 把它变成两个一维 ...
随机推荐
- BZOJ1048: [HAOI2007]分割矩阵
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1048 题解:搞清题意之后来个记忆化爆搜就行了. 代码: #include<cstdio& ...
- Asp.Net连接Mysql报错Out of sync with server
Asp.Net连接Mysql报错Out of sync with server 原因:程序引用的MySql.Data.dll版本高于服务器版本 解决:下载一个低版本的MySql.Data.dll,项目 ...
- Raphael绘制圆圈环绕方法
$scope.toRadians = function (degrees) { return degrees * (Math.PI / 180); } $scope.toDegrees = funct ...
- HDU 1272 小希的迷宫 (水题)
题意: 其实就是让你判断一个图是否为树,要求不能有孤立的点(没有这中情况),且只能有1个连通图,且边数+1=点数,且每个点都有边(不可能只有1个点出现). 思路: 有可能出现连续的4个0,也就是有测试 ...
- poj 2184 Cow Exhibition
// 给定n头牛,每头有属性智商和幽默感,这两个属性值有正有负,现在要从这n头牛中选出若干头使得他们的智商和与幽默感和不为负数,// 并且两者两家和最大,如果无解输出0,n<=100,-1000 ...
- system函数的总结
最近在看APUE第10章中关于system函数的POSIX.1的实现.关于POSIX.1要求system函数忽略SIGINT和SIGQUIT,并且阻塞信号SIGCHLD的论述,理解得不是很透彻,本文就 ...
- hdu 2155 小黑的镇魂曲(dp) 2008信息工程学院集训队——选拔赛
感觉蛮坑的一道题. 题意很像一个叫“是男人下100层”的游戏.不过多了个时间限制,要求在限定时间内从某一点下落到地面.还多了个最大下落高度,一次最多下落这么高,要不然会摔死. 一开始想dp的,然后想了 ...
- C# 如何以参数的形式调用.exe程序
System.Diagnostics.Process.Start("程序的路径", "参数1 参数2");第一个参数是aaa.exe 的路径,第二个参数是用空格 ...
- Andriod中绘(画)图----Canvas的使用详解
http://blog.csdn.net/qinjuning/article/details/6936783
- ubuntu下安装selenium2.0 环境
参考:http://www.cnblogs.com/fnng/archive/2013/05/29/3106515.html ubuntu 安装过程: 1.安装:setuptools $ apt-ge ...