同swustoj 169
Interior Points of Lattice Polygons
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 229   Accepted: 152

Description

lattice point is a point with integer coordinates. A lattice polygon is a polygon with all vertices lattice points.

The lattice points on the boundary of the polygon are boundary points (open dots in the figure above) and the points inside and not on the polygon are interior points (filled in dots in the figure above).

A polygon is convex if any line segment between two points of the polygon is inside (or on the boundary of) the polygon. Equivalently, the interior angle at each polygon vertex is less than 180 degrees. Note that any line between two points inside (and not on the boundary of) the polygon is entirely inside (and not on the boundary of) the polygon.

The interior points of a convex lattice polygon on any horizontal line form a single segment from a leftmost point to a rightmost point (which may be the same). Note that there may be no interior points (A), or only one (B), or isolated points (C) as shown in the figures below.

Write a program that reads the vertices of a convex lattice polygon in standard order and outputs the interior points as a list of horizontal line segments. The vertices of a lattice polygon are in standard order if: 
a) The first vertex is the one with the largest y value. If two vertices have the same y value, the one with the smaller x value is the first. 
b) Vertices are given in clockwise order around the polygon.

Input

The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. The first line of each data set contains the data set number, followed by a space, followed by a decimal integer giving the number vertices N, (3 ≤ N ≤ 50), of the polygon. The remaining lines in the data set contain the vertices, one per line in standard order. Each line contains the decimal integer x coordinate, a space and the decimal integer y coordinate.

Output

For each data set there are multiple lines of output. The first line contains a decimal integer giving the data set number followed by a single space, followed by a decimal integer giving the number of horizontal lines which contain interior points (this may be zero (0) or more). The lines of interior points, if any, follow, one per line in order of decreasing y value. Each line contains the decimal integer y coordinate, a single space and the decimal integer x coordinate of the left most point, a single space and the decimal integer x coordinate of the right most point.

Sample Input

6
1 8
5 10
8 9
11 6
10 2
6 0
1 1
0 4
2 8
2 4
3 10
13 7
10 -3
0 0
3 3
1 3
3 1
1 1
4 3
1 4
4 1
1 1
5 4
0 6
2 3
3 0
1 3
6 6
1 3
3 3
4 2
3 1
1 1
0 2

Sample Output

1 9
9 4 7
8 3 8
7 2 9
6 2 10
5 1 10
4 1 10
3 1 10
2 1 9
1 2 7
2 12
9 3 6
8 3 9
7 3 12
6 2 12
5 2 12
4 2 12
3 1 11
2 1 11
1 1 11
0 1 10
-1 4 10
-2 7 10
3 0
4 1
2 2 2
5 2
4 1 1
2 2 2
6 1
2 1 3

题意:给出一个凸多边形,求在其内部的格点

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
using namespace std;
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define EPS 1e-10
#define N 1010 int dcmp(double x)
{
if(fabs(x)<EPS) return ;
return x<?-:;
}
struct Point
{
double x,y;
Point (){}
Point (double x,double y):x(x),y(y){}
Point operator - (Point p){
return Point(x-p.x,y-p.y);
}
double operator * (Point p){
return x*p.x+y*p.y;
}
double operator ^ (Point p){
return x*p.y-y*p.x;
}
bool operator < (const Point &p)const
{
if(y!=p.y) return y>p.y;
return x<p.x;
}
};
struct Line
{
Point s,e;
Line (){}
Line (Point s,Point e):s(s),e(e){}
};
bool PointOnSeg(Line l,Point p)
{
return dcmp((l.s-p)^(l.e-p))== && dcmp((l.s-p)*(l.e-p))<=;
}
int PointInConvexPoly(Point p[],Point q,int n)
{
for(int i=;i<n;i++){
if(dcmp((p[i]-q)^(p[(i+)%n]-q))>) return -;
if(PointOnSeg(Line(p[i],p[(i+)%n]),q)) return ;
}
return ;
}
int main()
{
int n;
int T,iCase;
Point p[];
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&iCase,&n);
double mxx,mix,mxy,miy;
mix=miy=INF;
mxx=mxy=-INF;
for(int i=;i<n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
mix=min(mix,p[i].x);
mxx=max(mxx,p[i].x);
miy=min(miy,p[i].y);
mxy=max(mxy,p[i].y);
}
int k=;
Point q[];
for(int i=mix;i<=mxx;i++){
for(int j=miy;j<=mxy;j++){
if(PointInConvexPoly(p,Point(i,j),n)==){
q[k++]=Point(i,j);
}
}
}
if(k==){
printf("%d 0\n",iCase);
continue;
}
sort(q,q+k);
int i,j,cnt=;
for(i=;i<k;i++) if(q[i].y!=q[i-].y) cnt++;
printf("%d %d\n",iCase,cnt);
for(i=;i<k;i++){
printf("%g %g",q[i].y,q[i].x);
for(j=i+;j<k;j++){
if(q[j].y!=q[i].y) break;
}
printf(" %g",q[j-].x);
printf("\n");
i=j-;
}
}
return ;
}

[POJ 3788] Interior Points of Lattice Polygons的更多相关文章

  1. POJ 3805 Separate Points (判断凸包相交)

    题目链接:POJ 3805 Problem Description Numbers of black and white points are placed on a plane. Let's ima ...

  2. POJ 2464 Brownie Points II (树状数组,难题)

    题意:在平面直角坐标系中给你N个点,stan和ollie玩一个游戏,首先stan在竖直方向上画一条直线,该直线必须要过其中的某个点,然后ollie在水平方向上画一条直线,该直线的要求是要经过一个sta ...

  3. POJ - 2464 Brownie Points II 【树状数组 + 离散化】【好题】

    题目链接 http://poj.org/problem?id=2464 题意 在一个二维坐标系上 给出一些点 Stan 先画一条过一点的水平线 Odd 再画一条 过Stan那条水平线上的任一点的垂直线 ...

  4. POJ 2403 Hay Points

    Hay Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5735   Accepted: 3695 Descri ...

  5. hdu 1156 && poj 2464 Brownie Points II (BIT)

    2464 -- Brownie Points II Problem - 1156 hdu分类线段树的题.题意是,给出一堆点的位置,stan和ollie玩游戏,stan通过其中一个点画垂线,ollie通 ...

  6. 【POJ 1389】Area of Simple Polygons(线段树+扫描线,矩形并面积)

    离散化后,[1,10]=[1,3]+[6,10]就丢了[4,5]这一段了. 因为更新[3,6]时,它只更新到[3,3],[6,6]. 要么在相差大于1的两点间加入一个值,要么就让左右端点为l,r的线段 ...

  7. POJ 2464 Brownie Points II(树状数组)

    一开始还以为对于每根竖线,只要与过了任意一点的横线相交都可以呢,这样枚举两条线就要O(n^2),结果发现自己想多了... 其实是每个点画根竖线和横线就好,对于相同竖线统计(一直不包含线上点)右上左下总 ...

  8. POJ 2464 Brownie Points II --树状数组

    题意: 有点迷.有一些点,Stan先选择某个点,经过这个点画一条竖线,Ollie选择一个经过这条直接的点画一条横线.Stan选这两条直线分成的左下和右上部分的点,Ollie选左上和右下部分的点.Sta ...

  9. Poj 2403 Hay Points(Map)

    一.题目大意 实现一个工资计算系统.工资的计算规则是:首先,给定一些关键字和对应的价值,这个相对于字典.然后给出的是求职者的描述,如果这个描述中包含关键字则加上对应的价值,总得价值就是这个求职者的工资 ...

随机推荐

  1. 《WPF程序设计指南》读书笔记——第6章 Dock与Grid

    1.DockPanel面板 using System; using System.Windows; using System.Windows.Controls; using System.Window ...

  2. c# 模拟表单提交,post form 上传文件、大数据内容

    表单提交协议规定:要先将 HTTP 要求的 Content-Type 设为 multipart/form-data,而且要设定一个 boundary 参数,这个参数是由应用程序自行产生,它会用来识别每 ...

  3. Asp.net之LINQ入门视频教程

    当前位置: 主页 > 编程开发 > Asp.net视频教程 > Asp.net之LINQ入门视频教程 > http://www.xin1234.com/Program/Aspn ...

  4. 【socket】高级用法-异步

    ReceiveAsync ReceiveFromAsync ReceiveMessageFromAsync

  5. 【BZOJ [1878】[SDOI2009]HH的项链

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...

  6. My97DatePicker{js日历插件}

    VS自带了一个日历控件:Calendar,但是它有一个缺陷:即在选择,隐藏,显示的时候都会引起回传 Calendar控件的一些用法:    取值:Calendar1.SelectedDate.ToSh ...

  7. iOS百度地图路径规划和POI检索详细总结-b

    路径规划.png 百度地图的使用 百度地图API的导入网上说了许多坑,不过我遇到的比较少,这里就放两个比较常见的吧.坑一: 奥联WIFI_xcodeproj.png 如上图所示,在infoplist里 ...

  8. linux编程之指针

    这个是数组指针.指针数组.二维数组之间相互转换的代码 #include<stdio.h> void main() { ][]={,,,,,,,}; int *b=NULL; int **c ...

  9. iOS sqlite 增删改查 简单封装(基于 FMDB)

    /** *  对 sqlite 的使用进行简单封装,仅涉及简单的单表 增删改查 * *  基于 FMDB * *  操作基于 model ,数据库表字段与 model 属性一一对应,对 model 整 ...

  10. 1198: [HNOI2006]军机调度 - BZOJ

    Description 凯萨拥有一支由n个人组成的雇佣军,他们靠在威尼斯商行接任务过活.这支军队的成份比较复杂,不同的人往往具有不同的技能,有的人还拥有多项技能.威尼斯商行的任务也参差不齐,有的需要几 ...