题意:给一个正整数k,求lcm((k, 0), (k, 1), ..., (k, k))

解法:在oeis上查了这个序列,得知答案即为lcm(1, 2, ..., k + 1) / (k + 1),而分子有一个递推式,如果k为一个质数x的某次幂,那么ans[k]为ans[k - 1] * m,否则ans[k] = ans[k - 1]。做除法的时候用了逆元,因为取模来着。

代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string>
#include<string.h>
#include<math.h>
#include<limits.h>
#include<time.h>
#include<stdlib.h>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define LL long long
using namespace std;
LL ans[1000005];
LL const mod = 1000000007;
bool isprime[1000005];
LL prime[1000005];
map <LL, int> m;
int cnt = 0;
void init()
{
for(int i = 2; i < 1000005; i++)
{
if(!isprime[i])
{
prime[cnt++] = i;
for(int j = i; j < 1000005; j += i)
isprime[j] = 1;
}
}
for(int i = 0; i < cnt; i++)
{
LL tmp = 1LL;
while(tmp * prime[i] < 1000005)
{
tmp *= prime[i];
m[tmp] = prime[i];
}
}
}
LL power(LL a, LL b, LL MOD) {
LL res = 1;
a %= MOD;
while(b) {
if(b & 1) {
res = res * a % MOD;
b--;
}
b >>= 1;
a = a * a % MOD;
}
return res;
}
int main()
{
init();
ans[1] = 1;
for(int i = 2; i < 1000005; i++)
{
if(m.count(i))
{
ans[i] = ans[i - 1] * m[i] % mod;
}
else
ans[i] = ans[i - 1];
}
int T;
while(~scanf("%d", &T))
{
int n;
while(T--)
{
scanf("%d", &n);
printf("%lld\n", ans[n + 1] * power(n + 1, mod - 2, mod) % mod);
}
}
return 0;
}

  

HDU 5407 CRB and Candies的更多相关文章

  1. Hdu 5407 CRB and Candies (找规律)

    题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...

  2. HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  3. 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  4. HDU 5407 CRB and Candies(LCM +最大素因子求逆元)

    [题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...

  5. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  6. hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10

    题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...

  7. 数论 HDOJ 5407 CRB and Candies

    题目传送门 题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数. 分析:先上出题人的解题报告 好吧,数论一点都不懂,只明白f (n + 1) ...

  8. HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)

    题目地址:pid=5407">HDU 5407 题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少. 思路:首先做这道 ...

  9. 【HDOJ 5407】 CRB and Candies (大犇推导

    pid=5407">[HDOJ 5407] CRB and Candies 赛后看这题题解仅仅有满眼的迷茫------ g(N) = LCM(C(N,0),C(N,1),...,C(N ...

随机推荐

  1. Pyp 替代sed,awk的文本处理工具

    Linux上文本处理工具虽不少,像cut,tr,join,split,paste,sort,uniq,sed,awk这些经典工具让人眼花缭乱,而且都太老了,使用方法都不太人性化,尤其awk,语法简直反 ...

  2. IOS 视图控制对象生命周期-init、viewDidLoad、viewWillAppear、viewDidAppear、viewWillDisappear等的区别及用途

    iOS视图控制对象生命周期-init.viewDidLoad.viewWillAppear.viewDidAppear.viewWillDisappear.viewDidDisappear的区别及用途 ...

  3. 读写txt文件

    public void SetUpdateTime(string strNewDate) { try { var path =Application.StartupPath + Configurati ...

  4. div+css 定位浅析

    在用CSS+DIV进行布局的时候,一直对position的四个属性值relative,absolute,static,fixed分的不是很清楚,以致经常会出现让人很郁闷的结果. 先看下各个属性值的定义 ...

  5. linux入门教程(四) 初步进入linux世界

    [Linux 系统启动过程] Linux的启动其实和windows的启动过程很类似,不过windows我们是无法看到启动信息的,而linux启动时我们会看到许多启动信息,例如某个服务是否启动. Lin ...

  6. Biba模型简介

    上周上信息安全的课,老师留了个Biba模型的作业.自己看书了解了一下,记录如下. 参考资料:石文昌<信息系统安全概论第2版> ISBN:978-7-121-22143-9 Biba模型是毕 ...

  7. mysql23个知识点

    1.它是一种解释语言:写一句执行一句,不需要整体编译执行. 2.1.没有“ ”,字符串使用‘ '包含 3.一个表只有一个主键,但是一个主键可以是由多个字段组成的 组合键 4.实体完整性:实体就是指一条 ...

  8. 用 React 编写SVG图表

    1.代码 <!DOCTYPE html> <html lang="zh-cn"> <head> <meta charset="U ...

  9. 使用 Spring 3 来创建 RESTful Web Services(转)

    使用 Spring 3 来创建 RESTful Web Services 在 Java™ 中,您可以使用以下几种方法来创建 RESTful Web Service:使用 JSR 311(311)及其参 ...

  10. PHP中该怎样防止SQL注入?

    因为用户的输入可能是这样的: ? 1 value'); DROP TABLE table;-- 那么SQL查询将变成如下: ? 1 INSERT INTO `table` (`column`) VAL ...