[Luogu3723] [DarkBZOJ4827]

题解

首先,有一个结论:两个手环增加非负整数亮度,等于其中一个增加一个整数亮度(可以为负)

设增加亮度为x.求\(\sum_{i=1}^{n}(a_{i}+x-b_{i})^2\)

把式子拆开,问题转化为求 \(\sum_{i=1}^{n}a_{i}b_{i}\)的最大值 ,就是一个卷积

[一个套路] : 所以把反过来的数列 \({a}\) 倍长,和数列 \({b}\) 卷积,得到的项里面的第\(n+1\)到\(n*2\)项的最大值,就是原式的最大值

(手模发现有些位置是0,不影响,所以很巧妙的构造出了卷积的答案)

枚举最大值是枚举翻转,同时对于增加的x,由于最大亮度只有100,所以也只需要枚举\([-100,100]\)即可

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
} const int MAXN=300005;
const double Pi=acos(-1); namespace F_F_T{ struct cmpx{
double x,y;
cmpx(double xx=0,double yy=0){x=xx,y=yy;}
inline friend cmpx operator + (cmpx a,cmpx b){return cmpx(a.x+b.x,a.y+b.y);}
inline friend cmpx operator - (cmpx a,cmpx b){return cmpx(a.x-b.x,a.y-b.y);}
inline friend cmpx operator * (cmpx a,cmpx b){return cmpx(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
}A[MAXN],B[MAXN]; int r[MAXN],limit=1,l; inline void FFT(cmpx *A,int type){
for(int i=0;i<limit;i++)
if(i<r[i]) swap(A[i],A[r[i]]);
for(int len=1;len<limit;len<<=1){
cmpx Wn=(cmpx){cos(Pi/len),type*sin(Pi/len)};
for(int j=0;j<limit;j+=(len<<1)){
cmpx w=(cmpx){1,0};
for(int k=0;k<len;k++,w=w*Wn){
cmpx x=A[j+k],y=w*A[j+len+k];
A[j+k]=x+y;
A[j+len+k]=x-y;
}
}
}
} }using namespace F_F_T; LL n,m,a1,a2,b1,b2,ans=INF; int main(){
n=read(),m=read();
for(int i=1;i<=n;i++){
A[i+n].x=A[i].x=read();
a1+=A[i].x;
a2+=A[i].x*A[i].x;
}
for(int i=n;i>=1;i--){
B[i].x=read();
b1+=B[i].x;
b2+=B[i].x*B[i].x;
}
while(limit<=n*3) limit<<=1,l++;
for(int i=0;i<limit;i++)
r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
FFT(A,1);FFT(B,1);
for(int i=0;i<limit;i++) A[i]=A[i]*B[i];
FFT(A,-1);
for(int i=0;i<limit;i++)
A[i].x=(LL)(A[i].x/limit+0.5);
for(int i=n+1;i<=(n<<1);i++)
for(int j=-m;j<=m;j++)
ans=min(ans,a2+b2+n*j*j+2ll*j*(a1-b1)-2ll*(LL)A[i].x);
printf("%lld\n",ans);
}

[AH2017/HNOI2017]礼物(FFT)的更多相关文章

  1. [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)

    题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...

  2. [AH2017/HNOI2017]礼物(FFT)

    题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...

  3. LUOGU P3723 [AH2017/HNOI2017]礼物 (fft)

    传送门 解题思路 首先我们设变化量为\(r\),那么最终的答案就可以写成 : \[ ans=min(\sum\limits_{i=1}^n(a_i-b_i+r)^2) \] \[ ans=min(\s ...

  4. P3723 [AH2017/HNOI2017]礼物

    题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...

  5. 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告

    P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...

  6. 笔记-[AH2017/HNOI2017]礼物

    笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...

  7. bzoj 4827: [Hnoi2017]礼物 [fft]

    4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...

  8. 洛谷P3723 [AH2017/HNOI2017]礼物(FFT)

    传送门 首先,两个数同时增加自然数值相当于只有其中一个数增加(此增加量可以小于0) 我们令$x$为当前的增加量,${a},{b}$分别为旋转后的两个数列,那么$$ans=\sum_{i=1}^n(a_ ...

  9. [AH2017/HNOI2017] 礼物 解题报告 (FFT)

    题目链接: https://www.luogu.org/problemnew/show/P3723 题目: 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自 ...

随机推荐

  1. Docker的Gitlab镜像的使用

    Gitlab是一款非常强大的开源源码管理系统.它支持基于Git的源码管理.代码评审.issue跟踪.活动管理.wiki页面,持续集成和测试等功能.基于Gitlab,用户可以自己搭建一套类似Github ...

  2. 关于taskaffinity属性的作用

    意味着这activity更喜欢哪个TESK,具体见下方说明 当一个包含FLAG_ACTIVITY_NEW_TASK标志的intent启动一个activity时. 一个新的activity,默认地启动到 ...

  3. dpdk中uio技术

    总结一下dpdk的uio技术 一:什么是uio技术 UIO(Userspace I/O)是运行在用户空间的I/O技术,Linux系统中一般的驱动设备都是运行在内核空间,而在用户空间用应用程序调用即可, ...

  4. chrome headless

    最近才知道有这么个东西,说白了就是chrome浏览器的命令行模式,一说到命令行自然就和自动化 高效率有关系,感觉对于自动化测试和爬虫很有用啊

  5. 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-008排序算法的复杂度(比较次数的上下限)

    一. 1. 2.

  6. java 中一个char包含几个字节

    背景   char包含几个字节可能记得在上学的时候书上写的是2个字节,一直没有深究,今天我们来探究一下到底一个char多少个字节? Char   char在设计之初的时候被用来存储字符,可是世界上有那 ...

  7. c++中怎么实现Java中finally语句

    所有学习c++的书籍都明确提出了,不要使用goto, 以免造成程序流程的混乱,使理解和调试程序都产生困难. 但是我们遇到这样一个场景怎么办:就是不管程序执行成功与否,都要执行一些资源释放语句,相当ja ...

  8. 【Java学习】Java迭代器

    迭代器是一种模式,它可以使得对于序列类型的数据结构的遍历行为与被遍历的对象分离,即我们无需关心该序列的底层结构是什么样子的.只要拿到这个对象,使用迭代器就可以遍历这个对象的内部. 1.Iterator ...

  9. python常见的加密解密

    #!/usr/bin/env python ''' Python Crypto Wrapper - By Chase Schultz Currently Supports: AES-256, RSA ...

  10. Android消息传递之EventBus 3.0

    Android消息传递之EventBus 3.0使用详解 http://www.cnblogs.com/whoislcj/p/5595714.html EventBus 3.0进阶:源码及其设计模式 ...