[AH2017/HNOI2017]礼物(FFT)
首先,有一个结论:两个手环增加非负整数亮度,等于其中一个增加一个整数亮度(可以为负)
设增加亮度为x.求\(\sum_{i=1}^{n}(a_{i}+x-b_{i})^2\)
把式子拆开,问题转化为求 \(\sum_{i=1}^{n}a_{i}b_{i}\)的最大值 ,就是一个卷积
[一个套路] : 所以把反过来的数列 \({a}\) 倍长,和数列 \({b}\) 卷积,得到的项里面的第\(n+1\)到\(n*2\)项的最大值,就是原式的最大值
(手模发现有些位置是0,不影响,所以很巧妙的构造出了卷积的答案)
枚举最大值是枚举翻转,同时对于增加的x,由于最大亮度只有100,所以也只需要枚举\([-100,100]\)即可
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
}
const int MAXN=300005;
const double Pi=acos(-1);
namespace F_F_T{
struct cmpx{
double x,y;
cmpx(double xx=0,double yy=0){x=xx,y=yy;}
inline friend cmpx operator + (cmpx a,cmpx b){return cmpx(a.x+b.x,a.y+b.y);}
inline friend cmpx operator - (cmpx a,cmpx b){return cmpx(a.x-b.x,a.y-b.y);}
inline friend cmpx operator * (cmpx a,cmpx b){return cmpx(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
}A[MAXN],B[MAXN];
int r[MAXN],limit=1,l;
inline void FFT(cmpx *A,int type){
for(int i=0;i<limit;i++)
if(i<r[i]) swap(A[i],A[r[i]]);
for(int len=1;len<limit;len<<=1){
cmpx Wn=(cmpx){cos(Pi/len),type*sin(Pi/len)};
for(int j=0;j<limit;j+=(len<<1)){
cmpx w=(cmpx){1,0};
for(int k=0;k<len;k++,w=w*Wn){
cmpx x=A[j+k],y=w*A[j+len+k];
A[j+k]=x+y;
A[j+len+k]=x-y;
}
}
}
}
}using namespace F_F_T;
LL n,m,a1,a2,b1,b2,ans=INF;
int main(){
n=read(),m=read();
for(int i=1;i<=n;i++){
A[i+n].x=A[i].x=read();
a1+=A[i].x;
a2+=A[i].x*A[i].x;
}
for(int i=n;i>=1;i--){
B[i].x=read();
b1+=B[i].x;
b2+=B[i].x*B[i].x;
}
while(limit<=n*3) limit<<=1,l++;
for(int i=0;i<limit;i++)
r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
FFT(A,1);FFT(B,1);
for(int i=0;i<limit;i++) A[i]=A[i]*B[i];
FFT(A,-1);
for(int i=0;i<limit;i++)
A[i].x=(LL)(A[i].x/limit+0.5);
for(int i=n+1;i<=(n<<1);i++)
for(int j=-m;j<=m;j++)
ans=min(ans,a2+b2+n*j*j+2ll*j*(a1-b1)-2ll*(LL)A[i].x);
printf("%lld\n",ans);
}
[AH2017/HNOI2017]礼物(FFT)的更多相关文章
- [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...
- [AH2017/HNOI2017]礼物(FFT)
题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...
- LUOGU P3723 [AH2017/HNOI2017]礼物 (fft)
传送门 解题思路 首先我们设变化量为\(r\),那么最终的答案就可以写成 : \[ ans=min(\sum\limits_{i=1}^n(a_i-b_i+r)^2) \] \[ ans=min(\s ...
- P3723 [AH2017/HNOI2017]礼物
题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1 c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...
- 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告
P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...
- 笔记-[AH2017/HNOI2017]礼物
笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...
- bzoj 4827: [Hnoi2017]礼物 [fft]
4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...
- 洛谷P3723 [AH2017/HNOI2017]礼物(FFT)
传送门 首先,两个数同时增加自然数值相当于只有其中一个数增加(此增加量可以小于0) 我们令$x$为当前的增加量,${a},{b}$分别为旋转后的两个数列,那么$$ans=\sum_{i=1}^n(a_ ...
- [AH2017/HNOI2017] 礼物 解题报告 (FFT)
题目链接: https://www.luogu.org/problemnew/show/P3723 题目: 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自 ...
随机推荐
- OpenGL 着色器 03
着色器(shader)是运行在GPU上小程序. 也是一种非常独立的程序,它们之间不能相互通信:它们之间唯一的沟通只有通过输入和输出. 着色器的开头总是要声明版本,接着是输入和输出变量,uniform和 ...
- Android Studio Build APK没有报错,但是Generate signed apk报错
有时候 ,我们在调试APK,直接Build是可以正常生成,没有报错,但是当我们将自己的签名文件加上去,就会报错.一般情况下,我们可以在build.gradle中的android{}里面添加一个东西 l ...
- adb eclipse 截屏
DDMS 左侧 选中设备 右上角有一个相机样式的按钮"screen capture"
- nginx 启动、重启、关闭命令
一.启动 cd /usr/local/nginx/sbin ./nginx 二.重启 更改配置重启nginx kill -HUP 主进程号或进程号文件路径 或者cd /usr/local/ngi ...
- 【总结整理】display与position之间的关系【较完整】(转)
display与position之间的关系 以防自己忘记写的 网上找的 positon 与 display 的相互关系 元素分为内联元素和区块元素两类(当然也有其它的),在内联元素中有个非常重要的 ...
- String/StringBuilder 类 统计字符串中字符出现的次数
1.1. 训练描述:[方法.String类] 一.需求说明:定义如下字符串: String str = “javajfiewjavajfiowfjavagkljjava”; 二.请分别定义方法统计出: ...
- Zbar算法流程介绍
博客转载自:https://blog.csdn.net/sunflower_boy/article/details/50783179 zbar算法是现在网上开源的条形码,二维码检测算法,算法可识别大部 ...
- Linux共享对象之编译参数 -fPIC
转载自:https://www.cnblogs.com/cswuyg/p/3830703.html 在Linux系统中,动态链接文件称为动态共享对象(DSO,Dynamic Shared Ob ...
- 前端学习笔记2017.6.21-引入JS文件的方法
通过网络引入JS文件 <script src="https://www.xxx.com/aaa.js"></script> 如果是引入本地JS文件 < ...
- 10.model/view实例(4)
任务:给表单的每一列添加列名. 思考: 1.只需要添加一个函数 headerData(). 横向方面添加列名 代码如下: QVariant MyModel::headerData(int sectio ...