状压DP【p1896】[SCOI2005]互不侵犯
Description
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
Input
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
Output
所得的方案数
很明显\(N \leq 9\)状压DP啊 qwq.
这里有限制,我们只能放\(K\)个国王,并且如果一个格子有国王,其周围八个格子都不能放.
设状态\(f[i][j][k]\)代表前\(i\)行中第\(i\)行为\(j\)状态下共放了\(k\)个国王的方案数.
状态转移的话,我们当前行显然已经放了国王.
因此,转移可以很容易想到.
\]
其中\(l\)为枚举的上一行所放的国王的个数,\(k\)为枚举的上一行的状态,\(calc(j)\)为计算\(j\)状态下有多少个国王被放置.
判断合法与否的话,只需要判断一下当前\(j\)状态与\(k\)状态\(&\)起来是否为零。
如何判断状态合法
判断是否\(j\)状态的某一位置右上方有无国王.
\]
同理左上方
\]
正上方
\]
这几个方向是相对而言的.且我们从第\(1\)行到第\(n\)行放置的话,每次判断是否合法达到了判断6个方向的效果.
判断左右两侧当然是最简单的了
\]
代码
#include<cstdio>
#define int long long
#define R register
using namespace std;
int n,m,f[10][2048][108];
int lim,ans;
inline bool ok(int i)
{
return ((i&(i<<1))==0 and (i&(i>>1))==0);
}//相邻方向.
inline int calc(int x)
{
int res=0;
for(R int i=0;(1<<i)<=x;i++)
res+=(bool)(x&(1<<i));
return res;
}
signed main()
{
scanf("%lld%lld",&n,&m);
f[0][0][0]=1;
lim=(1<<n)-1;
for(R int i=1;i<=n;i++)
{
for(R int j=0;j<=lim;j++)
{
if(!ok(j))continue;
for(R int k=0;k<=lim;k++)
{
if(!ok(k))continue;
if((j&k)==0 and ((j<<1)&k)==0 and ((j>>1)&k)==0)
{
R int now=calc(j);
for(R int l=0;l<=m;l++)
f[i][j][l+now]+=f[i-1][k][l];
}
}
}
}
for(R int i=0;i<=lim;i++)
ans+=f[n][i][m];
printf("%lld\n",ans);
}
可以滚动数组滚掉第\(1\)维,切在枚举\(l\)的时候,第三维可能会超内存,因此要开大一点.当然也可以判断一下\(l+now \leq m\)
状压DP【p1896】[SCOI2005]互不侵犯的更多相关文章
- 状压入门--bzoj1087: [SCOI2005]互不侵犯King【状压dp】
Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行, ...
- 【状压DP】bzoj1087 互不侵犯king
一.题目 Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上.下.左.右,以及左上.左下.右上.右下八个方向上附近的各一个格子,共8个格子. I ...
- 洛谷 P1896 [SCOI2005]互不侵犯
洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...
- 洛谷——P1896 [SCOI2005]互不侵犯
P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...
- 洛谷P1896 [SCOI2005]互不侵犯King
P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...
- 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)
洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...
- P1896 [SCOI2005]互不侵犯 状压dp
正解:状压dp 解题报告: 看到是四川省选的时候我心里慌得一批TT然后看到难度之后放下心来觉得大概没有那么难 事实证明我还是too young too simple了QAQ难到爆炸TT我本来还想刚一道 ...
- P1896 [SCOI2005]互不侵犯King
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...
- P1896 [SCOI2005]互不侵犯
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...
- P1896 [SCOI2005] 互不侵犯 方法记录
原题链接 [SCOI2005] 互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...
随机推荐
- shell脚本递归删除空文件夹
有时我们需要递归删除空文件夹,网上找了一下,没有发现比较好的脚本,于是自己动手写了一个 脚本 #!/bin/bash # author: 十年后的卢哥哥(http://www.cnblogs.com/ ...
- 架构师速成7.3-devops为什么很重要 分类: 架构师速成 2015-07-07 17:22 410人阅读 评论(0) 收藏
evops是一个很高大上的名字,其实说的简单点就是开发和运维本身就是一个团队的,要干就一起把事情干好.谁出了问题,网站都不行.作为一个架构师,必须要devops,而且要知道如何推行devops. 首先 ...
- isinstance()判断数据类型
判断数据类型isinstance()l=[1,2,3]print(isinstance(l,list))#括号里面第一个填需要判断的数据,第二个是判断条件
- 孤荷凌寒自学python第十八天python变量的作用范围
孤荷凌寒自学python第十八天python函数的形参与变量的范围 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 一.在python的函数中各种不同的形式参数在定义的先后顺序上有规定: 必须 ...
- 【PHP】- 启用CRUL和GD
1.修改php.ini文件,确保extension_dir配置为php目录的ext,如图: 2.修改php.ini文件,将以下两项取消注释: 3.将php目录下的 libeay32.dll 和 lib ...
- A公司 推荐算法大赛 总结
一.介绍 ♦通过用户前四个月(04.15~08.15)的用户行为预测用户第五个月(08.15~09.15)将会购买的品牌.用户共有四种行为(type)分别是:点击(0).购买(1).购物车(2).收藏 ...
- mplab xIde 编译成功,但不能生成Hex文件
设置不对 如果还不行,在设置下面
- CF 1103B Game with modulo
题目 $a, x$ 是正整数.显然有 \begin{aligned} x \ge 2x \pmod{a} \implies a \le 2x \end{aligned} 若 $x \le a$ 则 \ ...
- JAVA File方法各类文件复制操作
import java.io.*; public class AllFile { public static void main(String[] args) throws Exception {// ...
- Struts2.0中ActionInvocation使用
Interceptor的接口定义没有什么特别的地方,除了init和destory方法以外,intercept方法是实现整个拦截器机制的核心方法.而它所依赖的参数ActionInvocation则是我们 ...