【BZOJ1965】[AHOI2005] SHUFFLE 洗牌(数学题)
大致题意: 有一叠扑克牌编号为\(1\sim n\)(\(n\)为偶数),每次洗牌将扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面一叠的第一张作为新的一叠的第二张,再取下面一叠的第二张作为新的一叠的第三张……如此交替直到所有的牌取完。问\(m\)次洗牌后第\(l\)张扑克牌的编号。
数学题
\(n,m\)这么大,比较显然是一道数学题。
设当前位置为\(x\),则不难发现,每次洗牌之后,下一次的位置为:\(2x\)%\((n+1)\)
以此类推,经过\(m\)次洗牌,这张扑克牌的位置应为\(2^mx\)%\((n+1)\)
既然这样,题目要我们求的就出一个\(x\)满足$$2^mx\equiv l(mod\text{ }n+1)$$
根据等式的性质,原式可化为$$x\equiv l·(2m){-1}(mod\text{ }n+1)$$
因此,我们只需求出\(2^m\)在模\(n+1\)意义下的乘法逆元,再乘以\(l\),就可以求出\(x\)了。
代码
#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define uint unsigned int
#define LL long long
#define ull unsigned long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define abs(x) ((x)<0?-(x):(x))
#define Fsize 100000
#define tc() (FinNow==FinEnd&&(FinEnd=(FinNow=Fin)+fread(Fin,1,Fsize,stdin),FinNow==FinEnd)?EOF:*FinNow++)
#define pc(ch) (putchar(ch))
int OutputTop=0;char Fin[Fsize],*FinNow=Fin,*FinEnd=Fin,OutputStack[Fsize];
using namespace std;
LL n,m,l;
inline void read(LL &x)
{
x=0;static char ch;
while(!isdigit(ch=tc()));
while(x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
}
inline void write(LL x)
{
if(!x) return (void)pc('0');
while(x) OutputStack[++OutputTop]=x%10+48,x/=10;
while(OutputTop) pc(OutputStack[OutputTop]),--OutputTop;
}
inline LL quick_pow(LL x,LL y,LL MOD)//快速幂
{
register LL res;
for(res=1;y;(x*=x)%=MOD,y>>=1) if(y&1) (res*=x)%=MOD;
return res;
}
inline void exgcd(LL x,LL y,LL &s1,LL &s2)//exgcd求逆元
{
if(!y) return (void)(s1=1,s2=0);
exgcd(y,x%y,s2,s1),s2-=x/y*s1;
}
inline LL Inv(LL x,LL y)//求逆元
{
register LL s1,s2;
exgcd(x,y,s1,s2);
return (s1%y+y)%y;
}
int main()
{
return read(n),read(m),read(l),write(Inv(quick_pow(2,m,n+1),n+1)*l%(n+1)),0;//求出2^m在模n+1意义下的逆元乘以l模n+1后的值
}
【BZOJ1965】[AHOI2005] SHUFFLE 洗牌(数学题)的更多相关文章
- BZOJ1965 [Ahoi2005]SHUFFLE 洗牌 快速幂
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1965 题意概括 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取 ...
- bzoj1965 [Ahoi2005]SHUFFLE 洗牌
Description 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联 ...
- 2018.11.07 bzoj1965: [Ahoi2005]SHUFFLE 洗牌(快速幂+exgcd)
传送门 发现自己的程序跑得好慢啊233. 管他的反正AC了 先手玩样例找了一波规律发现题目要求的就是a∗2m≡l(modn+1)a*2^m\equiv l \pmod {n+1}a∗2m≡l(modn ...
- BZOJ1965: [Ahoi2005]SHUFFLE 洗牌(exgcd 找规律)
Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 989 Solved: 660[Submit][Status][Discuss] Description ...
- 【bzoj1965】: [Ahoi2005]SHUFFLE 洗牌 数论-快速幂-扩展欧几里得
[bzoj1965]: [Ahoi2005]SHUFFLE 洗牌 观察发现第x张牌 当x<=n/2 x=2x 当x>n/2 x=2x-n-1 好像就是 x=2x mod (n+1) 就好 ...
- 【BZOJ-1965】SHUFFLE 洗牌 快速幂 + 拓展欧几里德
1965: [Ahoi2005]SHUFFLE 洗牌 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 541 Solved: 326[Submit][St ...
- BZOJ 1965: [Ahoi2005]SHUFFLE 洗牌( 数论 )
对于第x个数, 下一轮它会到位置p. 当x<=N/2, p = x*2 当x>N/2, p = x*2%(N+1) 所以p = x*2%(N+1) 设一开始的位置为t, 那么t*2M%(N ...
- 1965: [Ahoi2005]SHUFFLE 洗牌
1965: [Ahoi2005]SHUFFLE 洗牌 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 408 Solved: 240[Submit][St ...
- [AHOI2005] SHUFFLE 洗牌
1965: [Ahoi2005]SHUFFLE 洗牌 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 952 Solved: 630[Submit][St ...
随机推荐
- App裂变活动多种玩法解析
移动互联网时代,流量为王.在App获取流量的过程中,有资金的砸广告,没资金的铺渠道,但是不管你有钱没钱,社交平台都是必须重点争夺的流量阵地. 毕竟,截至2018年底,微信及WeChat的合并月活跃账户 ...
- js千分位处理
一.去掉千分位 function removeThousands(num) { var x = num.split(','); return parseFloat(x.join("" ...
- 谈谈python修饰器
前言 对python的修饰器的理解一直停留在"使用修饰器把函数注册为事件的处理程序"的层次,也是一知半解:这样拖着不是办法,索性今天好好整理一下关于python修饰器的概念及用法. ...
- Linux之dstat命令
dstat命令是一个用来替换vmstat.iostat.netstat.nfsstat和ifstat这些命令的工具,是一个全能系统信息统计工具.与sysstat相比,dstat拥有一个彩色的界面,在手 ...
- js固定两位小数toFixed(2)
total=total.toFixed(3); 小数问题:可以number(),或者*1来改变变量类型.
- centos服务器nginx相关命令
1.找到nginx路径: ps aux | grep nginx -> /usr/local/nginx/sbin/nginx 2.nginx配置检查: /usr/local/nginx/sbi ...
- ACdream 1430——SETI——————【后缀数组,不重叠重复子串个数】
SETI Time Limit: 4000/2000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) Submit Statist ...
- linux安装jdk7步骤
linux安装jdk7步骤: 1.首先使用命令查看linux系统版本号: lsb_release -a 2.下载对应的jdk版本,笔者使用的是jdk-7u79-linux-x64.tar.gz: 3. ...
- java+elipse安装及部分问题
1. elipse下载.安装.jdk环境配置教程: https://www.cnblogs.com/ForestDeer/p/6647402.html 2.eclipse使用教程: https://j ...
- python_1基础学习
2017年12月02日 20:14:48 独行侠的守望 阅读数:221 标签: python 更多个人分类: Python编辑版权声明:本文为博主原创文章,转载请注明文章链接. https://blo ...