P1373 小a和uim之大逃离
转自:http://www.cnblogs.com/CtsNevermore/p/6028138.html
题目背景
小a和uim来到雨林中探险。突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声。刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从天空中打落下来,只见前方出现了一个披头散发、青面獠牙的怪物,低沉着声音说:“呵呵,既然你们来到这,只能活下来一个!”。小a和他的小伙伴都惊呆了!
题目描述
瞬间,地面上出现了一个n*m的巨幅矩阵,矩阵的每个格子上有一坨0~k不等量的魔液。怪物各给了小a和uim一个魔瓶,说道,你们可以从矩阵的任一个格子开始,每次向右或向下走一步,从任一个格子结束。开始时小a用魔瓶吸收地面上的魔液,下一步由uim吸收,如此交替下去,并且要求最后一步必须由uim吸收。魔瓶只有k的容量,也就是说,如果装了k+1那么魔瓶会被清空成零,如果装了k+2就只剩下1,依次类推。怪物还说道,最后谁的魔瓶装的魔液多,谁就能活下来。小a和uim感情深厚,情同手足,怎能忍心让小伙伴离自己而去呢?沉默片刻,小a灵机一动,如果他俩的魔瓶中魔液一样多,不就都能活下来了吗?小a和他的小伙伴都笑呆了!
现在他想知道他们都能活下来有多少种方法。
输入输出格式
输入格式:
第一行,三个空格隔开的整数n,m,k
接下来n行,m列,表示矩阵每一个的魔液量。同一行的数字用空格隔开。
输出格式:
一个整数,表示方法数。由于可能很大,输出对1 000 000 007取余后的结果。
输入输出样例
2 2 3 1 1 1 1
4
说明
【题目来源】
lzn改编
【样例解释】
样例解释:四种方案是:(1,1)->(1,2),(1,1)->(2,1),(1,2)->(2,2),(2,1)->(2,2)。
【数据范围】
对于20%的数据,n,m<=10,k<=2
对于50%的数据,n,m<=100,k<=5
对于100%的数据,n,m<=800,1<=k<=15
这题还不算太难,,当初看的时候不是很理解题意,以为他们会选择两条不同的路径,导致整体思路混乱
其实理解题意和思路之后还是敲了不短的时间,一部分身体原因再加上中午休息不太好,整个人思路较乱,靠本能打了一遍代码毫无头绪。恢复了一下状态重新开打,才算是A掉
题解
设dp[i][j][l][p]为当前走到第(i, j)位,当前(a - b) % k 为l,本次是第p个人取得药,p = 0为a,p = 1 为b,
此时的方案数
则 dp[i][j][l][1] += dp[i-1][j][((l + a[i][j]) % k + k) % k][0] + dp[i][j-1][((l + a[i][j]) % k + k) % k][0]
dp[i][j][l][0] += dp[i-1][j][((l - a[i][j]) % k + k) % k][1] + dp[i][j-1][((l - a[i][j]) % k + k) % k][1]
举个栗子:
假设本次在(3, 2),该1(uim)走,则该状态的上一个状态应为 当前在(3,1),该0(小a)走,当时的差为l + a[i][j] 另一个状态同理。
解释一下差加减的原理:
我们的dp方程的第三维定义的是a(小a) - b(uim)的差,那么按照上面的栗子来看,本步由uim来走,那么它们状态的差应减少,减少值为a[i][j],所以上一状态为l + a[i][j],
扯一点关于初始化的东西
由于题目中规定可以从每个点开始,同时必须小a先吸收,所以
对于读入的每一个a[i][j],设dp[i][j][a[i][j] % k][0] = 1
其余点均为0
关于k
实在有些不理解出题人的脑洞,,(lzn别打我= =),,只有k的容量,到了k+1就会清零,,,默默地k++吧
关于复杂度
记录两个人的当前值肯定会T,使用long long会M,据说常数太大会卡两个,暂时没发现
关于差值问题:
有人说差值可正可负,我当时也考虑了一段时间,后来发现在%k意义下对答案没有任何影响,即 k = 3时,(k + 1等于4时)a比b少2和a比b多2其实是等效的,即a拿2个后两人均相同
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
+ ;
;
][];
int a[maxn][maxn];
int n, m, k;
int main () {
scanf("%d %d %d", &n, &m, &k);
k++;
; i <= n; i++) {
; j <= m; j++) {
scanf("%d", &a[i][j]);
dp[i][j][(a[i][j]) % k][] = ;
}
}
; i <= n; i++) {
; j <= m; j++) {
; l < k; l++) {
dp[i][j][l][] = (dp[i][j][l][] + dp[i-][j][((l + a[i][j]) % k + k) % k][] + dp[i][j-][((l + a[i][j]) % k + k) % k][]) % mod;
dp[i][j][l][] = (dp[i][j][l][] + dp[i-][j][((l - a[i][j]) % k + k) % k][] + dp[i][j-][((l - a[i][j]) % k + k) % k][]) % mod;
}
}
}
;
; i <= n; i++)
; j <= m; j++) {
ans = (ans + dp[i][j][][]) % mod;
}
printf("%lld", ans);
;
}
P1373 小a和uim之大逃离的更多相关文章
- 洛古 P1373 小a和uim之大逃离
P1373 小a和uim之大逃离 题目提供者lzn 标签 动态规划 洛谷原创 难度 提高+/省选- 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电 ...
- 洛谷 P1373 小a和uim之大逃离
2016-05-30 12:31:59 题目链接: P1373 小a和uim之大逃离 题目大意: 一个N*M的带权矩阵,以任意起点开始向右或者向下走,使得奇数步所得权值和与偶数步所得权值和关于K的余数 ...
- 洛谷P1373 小a和uim之大逃离
P1373 小a和uim之大逃离 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声.刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从 ...
- 【题解】 P1373 小a和uim之大逃离
题解 P1373 小a和uim之大逃离 传送门 一道dp好题 乍看此题,感觉要这样设计: \(dp(x)(y)(mod_{a})(mod_{uim})(0/1)\) , 但是我上午考试就MLE了,赶紧 ...
- 【题解】P1373 小a和uim之大逃离
[题解]P1373 小a和uim之大逃离 考虑到可能会MLE,考虑状态压缩一下 由于只要得到他们的差就行了,所以直接少记录一维就好了 \(dp(i,j,r,1/0)\)表示在\(i,j\)点,当前ui ...
- 洛谷P1373 小a和uim之大逃离[背包DP]
题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声.刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从天空中打落下来,只见前方出现了一个 ...
- 洛谷 P1373 小a和uim之大逃离 Label:dp 不会
题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声.刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从天空中打落下来,只见前方出现了一个 ...
- P1373 小a和uim之大逃离 二维dp
题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声.刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从天空中打落下来,只见前方出现了一个 ...
- 【luogu P1373 小a和uim之大逃离】 题解
题目链接:https://www.luogu.org/problemnew/show/P1373 想不出来状态 看了一眼题解状态明白了 dp[i][j][h][1/0] 表示在i,j点差值为h是小A还 ...
随机推荐
- jstl 中 <c:foreach> 多级循环
- C语言编写一个简单游戏
感悟:这算是一个起点吧,我都大二了,还这么菜,才开始写游戏,这个游戏很简单,利用随机数猜大小! #include <stdlib.h> #include <stdio.h> # ...
- 使用python实现计算器功能
学习python过程中的作业.实现了+.-.×./.及幂运算,支持括号优先级. 代码为python3.5 import re def formatEquation(string): string = ...
- 2017年编程语言排行榜Top10,第一名是?
关注 最近,IEEE Spectrum 杂志(美国电气电子工程师学会出版的旗舰杂志)发布了一年一度的编程语言排行榜,这也是他们发布的第四届编程语言 Top 榜.据介绍,IEEE Spectrum 的排 ...
- Spring读书笔记——bean创建(下)
有关Spring加载bean系列,今天这是最后一篇了,主要接上篇对于从Spring容器中获取Bean的一些细节实现的补充. <Spring读书笔记--bean加载>--Spring如何加载 ...
- Python函数篇:dict函数和列表生成式
1.dict函数语法:dict()dict(**kwarg) dict(mapping, **kwarg) dict(iterable, **kwarg) 第一种:dict()构造一个空字典 h=di ...
- IdentityServer4 指定角色授权(Authorize(Roles="admin"))
1. 业务场景 IdentityServer4 授权配置Client中的AllowedScopes,设置的是具体的 API 站点名字,也就是使用方设置的ApiName,示例代码: //授权中心配置 n ...
- 0_Simple__simpleAssert + 0_Simple__simpleAssert_nvrtc
在核函数中使用强制终止函数 assert().并且在静态代码和运行时编译两种条件下使用. ▶ 源代码:静态使用 #include <windows.h> #include <stdi ...
- Sqoop的安装部署
在root的用户下 1):前提 安装JDK环境 2):前提 安装Hadoop和Hive客户端环境,如果需要导出到HBase则需要安装HBase客户端 3):下载sqoop : 命令: wget htt ...
- css元素选择器 first-child nth-child
E:first-child 只要E元素是它的父级的第一个子元素,就选中.它需要同时满足两个条件, (1)是"第一个子元素", (2)是"这个子元素刚好是E ...