UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There Was One / POJ 3517 And Then There Was One / Aizu 1275 And Then There Was One (动态规划,思维题)

Description

Let’s play a stone removing game.

Initially, n stones are arranged on a circle and numbered 1, …, n clockwise (Figure 1). You are also given two numbers k and m. From this state, remove stones one by one following the rules explained below, until only one remains. In step 1, remove stone m. In step 2, locate the k-th next stone clockwise from m and remove it. In subsequent steps, start from the slot of the stone removed in the last step, make k hops clockwise on the remaining stones and remove the one you reach. In other words, skip (k − 1) remaining stones clockwise and remove the next one. Repeat this until only one stone is left and answer its number. For example, the answer for the case n = 8, k = 5, m = 3 is 1, as shown in Figure 1.



Initial state: Eight stones are arranged on a circle.

Step 1: Stone 3 is removed since m = 3.

Step 2: You start from the slot that was occupied by stone 3. You skip four stones 4, 5, 6 and 7 (since k = 5), and remove the next one, which is 8.

Step 3: You skip stones 1, 2, 4 and 5, and thus remove 6. Note that you only count stones that are still on the circle and ignore those already removed. Stone 3 is ignored in this case.

Steps 4–7: You continue until only one stone is left. Notice that in later steps when only a few stones remain, the same stone may be skipped multiple times. For example, stones 1 and 4 are skipped twice in step 7.

Final State: Finally, only one stone, 1, is on the circle. This is the final state, so the answer is 1.

Input

The input consists of multiple datasets each of which is formatted as follows.

n k m

The last dataset is followed by a line containing three zeros. Numbers in a line are separated by a single space. A dataset satisfies the following conditions.

2 ≤ n ≤ 10000, 1 ≤ k ≤ 10000, 1 ≤ m ≤ n

The number of datasets is less than 100.

Output

For each dataset, output a line containing the stone number left in the final state. No extra characters such as spaces should appear in the output.

Sample Input

8 5 3

100 9999 98

10000 10000 10000

0 0 0

Sample Output

1

93

2019

Http

UVA:https://vjudge.net/problem/UVA-1394

Gym:https://vjudge.net/problem/Gym-101415A

UVAlive:https://vjudge.net/problem/UVALive-3882

POJ:https://vjudge.net/problem/POJ-3517

Aizu:https://vjudge.net/problem/Aizu-1275

Source

动态规划,思维

题目大意

约瑟夫问题的变式。先指定第m个人必须死,然后每隔k个人死一个。求最后那个死的人的编号是什么。

解决思路

首先不考虑第一个必须死的人是m的情况。我们把n个人编号为[0,n-1]。那么第一轮出局的就是编号为k-1的人,剩下的人的编号是\([0,k-2]\cup[k,n-1]\)。

然后我们从编号为k的人开始,循环一圈给所有人重新分配编号



然后我们就可以发现原来n个人的题目就变成了n-1的规模。运用这种方法,我们就可以推到n=1的情况,而此时,F[1]=0。

那么,既然现在知道n=1的结果,那么我们考虑从1开始正着推出n。我们设F[i]表示i个人中最后存活的人的编号。现在我们知道F[i-1],怎么推出F[i]呢?

其实这个问题就是问如何用存活者在i-1个人中的编号求出存活者在i个人中的编号。我们知道,从原问题推到子问题其实是把所有人的编号-k,那么从子问题推到原问题就是把人的编号+k,但要注意,此时+k可能会大于当前人的规模i,所以要对i取膜。

综上,动态转移的方程就是

\[F[i]=(F[i-1]+k)\%i
\]

当然这个式子还可以化简。因为F[i]的状态只与F[i-1]有关,所以我们可以直接用一个变量f代替整个F数组

\[f=(f+k)\%i
\]

最后再来考虑第一个死的人必须是m的情况,而我们第一个人是k,所以相当于我们要补上m-k的一个差量,所以最后的答案是f+m-k。另外需要注意的是,因为我们在递推的时候为了方便从0开始编号的,所以还要加上1,也就是f+m-k+1,再对n取膜。同时,如果取膜后结果是0或负数,要加上n变成正数。

代码不长,但要想到很难。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; const int inf=2147483647; int main()
{
int n,k,m;
while (scanf("%d%d%d",&n,&k,&m)!=EOF)
{
if ((n==0)&&(m==0)&&(k==0))
break;
int f=0;//初始值
for (int i=2;i<=n;i++)//动态转移
f=(f+k)%i;
f=(f+m-k+1)%n;//把开始是m的情况考虑进去
if (f<=0)//取膜后有可能变成负数或0,此时要将其变成正数
f=f+n;
printf("%d\n",f);
}
return 0;
}

UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There Was One / POJ 3517 And Then There Was One / Aizu 1275 And Then There Was One (动态规划,思维题)的更多相关文章

  1. poj 2229 一道动态规划思维题

    http://poj.org/problem?id=2229 先把题目连接发上.题目的意思就是: 把n拆分为2的幂相加的形式,问有多少种拆分方法. 看了大佬的完全背包代码很久都没懂,就照着网上的写了动 ...

  2. UVA.699 The Falling Leaves (二叉树 思维题)

    UVA.699 The Falling Leaves (二叉树 思维题) 题意分析 理解题意花了好半天,其实就是求建完树后再一条竖线上的所有节点的权值之和,如果按照普通的建树然后在计算的方法,是不方便 ...

  3. UVA.679 Dropping Balls (二叉树 思维题)

    UVA.679 Dropping Balls (二叉树 思维题) 题意分析 给出深度为D的完全二叉树,按照以下规则,求第I个小球下落在那个叶子节点. 1. 默认所有节点的开关均处于关闭状态. 2. 若 ...

  4. UVA.11384 Help is needed for Dexter (思维题)

    UVA.11384 Help is needed for Dexter (思维题) 题意分析 同样水题一道,这回思路对了. 给出数字n,面对一个1,2,3,4--n的数字序列,你可以对他们的部分或者全 ...

  5. UVA.11636 Hello World! (思维题)

    UVA.11636 Hello World! (思维题) 题意分析 这题挺水的,还是错了几发. QWQ. 有一个同学打了一行hello world,现在他想打n行hello world,请问最少复制粘 ...

  6. UVA.11464 Even Parity (思维题 开关问题)

    UVA.11464 Even Parity (思维题 开关问题) 题目大意 给出一个n*n的01方格,现在要求将其中的一些0转换为1,使得每个方格的上下左右格子的数字和为偶数(如果存在的话),求使得最 ...

  7. UVA.10881 Piotr's Ants (思维题)

    UVA.10881 Piotr's Ants (思维题) 题意分析 有一根长度为L cm的木棍,上有n只蚂蚁,蚂蚁要么向左爬,要么向右,速度均为1cm/s,若2只蚂蚁相撞,则蚂蚁同时调头.求解第T秒时 ...

  8. UVA.11300 Spreading the Wealth (思维题 中位数模型)

    UVA.11300 Spreading the Wealth (思维题) 题意分析 现给出n个人,每个人手中有a[i]个数的金币,每个人能给其左右相邻的人金币,现在要求你安排传递金币的方案,使得每个人 ...

  9. 思维题 Gym 100553A Alter Board

    题目传送门 /* 题意:一个n×m的矩形,相邻的颜色不同,黑或白.问最少的翻转次数,每次翻转可指定任意一个子矩形 思维题:最少要把偶数行和列翻转,也就是n/2+m/2次 */ #include < ...

随机推荐

  1. CAD2020下载安装AutoCAD2020中文版下载地址+安装教程

    AutoCAD2020中文版为目前最新软件版本,我第一时间拿到软件进行安装测试,确保软件正常安装且各项功能正常可以使用,立刻拿出来分享,想用最新版本的话,抓紧下载使用吧: 我把我用的安装包贡献给你下载 ...

  2. Linux运维笔记-日常操作命令总结(2)

    回想起来,从事linux运维工作已近5年之久了,日常工作中会用到很多常规命令,之前简单罗列了一些命令:http://www.cnblogs.com/kevingrace/p/5985486.html今 ...

  3. SCRUM 12.22

    周一,大家现在课程也比较少,今天都在非常努力地写代码. 任务分配如往常一样,我们现在基本将工作的重心放在完善已有的组件上. 成员 任务 彭林江 落实API 牛强 落实意见反馈功能测试 高雅智 测试已完 ...

  4. Android 學習之旅!(2)

    早幾天因爲學車,弄了幾天時間和精力過去,今天終於考過了(科目二,還是補考的...)嗯..不管這麼多了..今天又開始我的android 學習之旅!! 筆記: platform-tools目錄下的文件: ...

  5. 续摄影O2O篇

    项目名:摄影O2O 工具:Eclipse ,adt,jdk1.8,MySQL 步骤:(一) 1.导入beauty项目到一个adt中,然后创建模拟器,运行(客户端) 2.导入SocketSever项目到 ...

  6. 5-Python3从入门到实战—基础之数据类型(列表-List)

    Python从入门到实战系列--目录 列表定义 list:列表(list)是Python内置的一种数据类型,list是一种有序的集合,索引从0开始,可以进行截取.组合等: //创建列表 list1 = ...

  7. 『编程题全队』Beta 阶段用户使用调查报告

    目录 一.项目概述 1.1项目名称 1.2项目简介 1.3项目预期达到目标 1.4项目测试方法 二.项目测试过程 2.1测试对象 2.2测试时长 2.3用户测试反馈 一.项目概述 1.1项目名称 本次 ...

  8. JS判断浏览器种类

    function myBrowser() {                        var userAgent = navigator.userAgent; //取得浏览器的userAgent ...

  9. Oracle 数据库启动过程

    一 启动数据库 Oracle启动过程涉及几种模式,这些模式涉及不同的文件,每个状态下数据库做不同的事情,同时这些模式适用于不同的维护需求,主要的模式有三种:NOMOUNT.MOUNT.OPEN. 1 ...

  10. ORA-01654 : 表空间不足

    参考: Oracle表空间不足ORA-01654 查看表空间和表的使用率 ORA-01654 索引 无法通过 表空间扩展 Oracle 查看表空间的大小及使用情况sql语句 一.基础查询 1.查看表空 ...