题意

题目链接

Sol

神仙题Orz

Orz zbq爆搜70。。

考虑"与"和"或"的性质

\(0 \& 0 = 0, 1 \& 0 = 0\)

\(0 \mid 1 = 1, 1 \mid 1 = 1\)

也就是说某一个数\(\& 0\)之后不管之前是什么,现在的值变为\(0\)

某一个数\(\mid 1\)之后不管之前的是什么,现在的值变为\(1\)

继续考虑

\(0 \& 1 = 0, 1 \& 1 = 1\)

\(0 \mid 0 = 0, 1 \mid 0 = 1\)

这个时候我们把\(\&\)看做是1,\(\mid\)看做是\(0\)

那么对于上面这两条式子,可以看出若某个数和前面的运算符相同,之前的值不会发生改变

这时候考虑如何计算答案,对于每次询问,若某一位上是\(1\)

那么我们把每一列上的数和他之前的操作符分别拿出来看成一些序列,显然这个序列要满足最后一个\(\mid 1\)要在\(\& 0\)之后

那么这两个序列应该长这个样子:

\(101010 \dots 0 \dots 1\)

\(101010 \dots 1 \dots 0\)

我们会惊奇的发现,第一个式子一定大于第二式子。同理如果询问的位置是\(0\)的话,第一个式子应该小于第二个式子

又因为第二个式子的\(0/1\)可以任意取。那么答案应该是\(min_1 - max_0\),\(min_1\)表示询问位置上的值是\(1\)对应的列的最小值(每一列的第一行是最低位)。

这样的复杂度是\(O(nmq)\)

实际上每次询问至于每一列的大小有关,我们可以先按照字符串的大小排一遍序(搞出类似后缀数组中的sa和rak数组),这样每次询问就只需要计算两个串的答案了

复杂度:\(O(mn\log m + mq)\)

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN = 5e5 + 10, INF = 1e9 + 7, mod = 1000000007;
template<typename A, typename B> inline void chmax(A &x, B y) {
x = x > y ? x : y;
}
template<typename A, typename B> inline void chmin(A &x, B y) {
x = x < y ? x : y;
}
template<typename A, typename B> inline void add2(A &x, B y) {
x = (x + y >= mod ? x + y - mod : x + y);
}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, Q, v[MAXN], rak[MAXN], po2[MAXN], sa[MAXN], val[MAXN];
char a[1002][5002], q[5001];
int comp(const int &x, const int &y) {
for(int i = N; i >= 1; i--)
if(a[i][x] == '0' && a[i][y] == '1') return 1;
else if(a[i][x] == '1' && a[i][y] == '0') return 0;
return 0;
}
int trans(int id) {
int ans = 0;
for(int i = N; i >= 1; i--)
if(a[i][id] == '1') add2(ans, po2[i - 1]);
return ans;
}
int main() {
// freopen("a.in", "r", stdin);
N = read(); M = read(); Q = read(); po2[0] = 1;
for(int i = 1; i <= N; i++) scanf("%s", a[i] + 1), po2[i] = (po2[i - 1] * 2) % mod;
for(int i = 1; i <= N; i++) a[i][M + 1] = '1', a[i][0]= '0';
for(int i = 1; i <= M + 1; i++) sa[i] = i;
sort(sa + 1, sa + M + 2, comp);
for(int i = 1; i <= M + 1; i++) rak[sa[i]] = i;
for(int i = 1; i <= M + 1; i++) val[i] = trans(i); val[M + 1]++;//不++就比答案少1,加了莫名其妙就过了。。。
for(int i = 1; i <= Q; i++) {
scanf("%s", q + 1);
int r = M + 1, l = 0;
for(int j = 1; j <= M; j++)
if(q[j] == '1') chmin(r, rak[j]);
else chmax(l, rak[j]);
if(l > r) puts("0");
else cout << (val[sa[r]] - val[sa[l]] + mod) % mod << '\n';
}
return 0;
}
/*
3
0 1 1
5 7 3
*/

洛谷P4424 [HNOI/AHOI2018]寻宝游戏(思维题)的更多相关文章

  1. [Bzoj5285][洛谷P4424][HNOI/AHOI2018]寻宝游戏(bitset)

    P4424 [HNOI/AHOI2018]寻宝游戏 某大学每年都会有一次Mystery Hunt的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为新生 ...

  2. BZOJ5285 & 洛谷4424 & UOJ384:[HNOI/AHOI2018]寻宝游戏——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5285 https://www.luogu.org/problemnew/show/P4424 ht ...

  3. [洛谷P4436] HNOI/AHOI2018 游戏

    问题描述 一次小G和小H在玩寻宝游戏,有n个房间排成一列,编号为1,2,...,n,相邻的房间之间都有一道门.其中一部分门上锁(因此需要有对应的钥匙才能开门),其余的门都能直接打开.现在小G告诉了小H ...

  4. 【洛谷4424】[HNOI_AHOI2018]寻宝游戏(我也不知道括号里该写啥)

    题目 洛谷 4424 分析 感觉思路比较神仙. 对于按位与和按位或两种运算,显然每一位是独立的,可以分开考虑. 对于某一位,「与 \(0\)」会将这一位变成 \(0\),「或 \(1\)」会将这一位变 ...

  5. 【洛谷4424】[HNOI/AHOI2018] 寻宝游戏(位运算思维题)

    点此看题面 大致题意: 给你\(n\)个\(m\)位二进制数.每组询问给你一个\(m\)位二进制数,要求你从\(0\)开始,依次对于这\(n\)个数进行\(and\)或\(or\)操作,问有多少种方案 ...

  6. 洛谷 P4437 [HNOI/AHOI2018]排列(贪心+堆,思维题)

    题面传送门 开始 WA ycx 的遗产(bushi 首先可以将题目转化为图论模型:\(\forall i\) 连边 \(a_i\to i\),然后求图的一个拓扑序 \(b_1,b_2,\dots b_ ...

  7. 洛谷P4438 [HNOI/AHOI2018]道路(dp)

    题意 题目链接 Sol 每当出题人想起他出的HNOI 2018 Day2T3,他都会激动的拍打着轮椅 读题比做题用时长系列... \(f[i][a][b]\)表示从根到\(i\)的路径上,有\(a\) ...

  8. 洛谷P4425 [HNOI/AHOI2018]转盘(线段树)

    题意 题目链接 Sol 首先猜一个结论:对于每次询问,枚举一个起点然后不断等到某个点出现时才走到下一个点一定是最优的. 证明不会,考场上拍了3w组没错应该就是对的吧... 首先把数组倍长一下方便枚举起 ...

  9. [HNOI/AHOI2018]寻宝游戏

    题目大意: $n(n\le1000)$个$m(m\le5000)$位的二进制数,第$0$个数为$0$.用$\wedge$和$\vee$将这些数连接起来.$q(q\le1000)$次询问,每次给定一个$ ...

随机推荐

  1. 五、MongoDB的索引

    一.MongoDB的下载.安装与部署 二.MongoDB的基础知识简介 三.MongoDB的创建.更新和删除 四.MongoDB的查询 五.MongoDB的索引 1.简介 它就像是一本书的目录,如果没 ...

  2. Spring之AOP由浅入深

    1.AOP的作用 在OOP中,正是这种分散在各处且与对象核心功能无关的代码(横切代码)的存在,使得模块复用难度增加.AOP则将封装好的对象剖开,找出其中对多个对象产生影响的公共行为,并将其封装为一个可 ...

  3. 小试 boost spirit

    解释文本文件是日常编程中太平常的一件事情了,一般来说,土鳖点的做法可以直接手写 parser 用循环暴力地去 map 文本上的关键字从而提取相关信息,想省力一点则可以使用 tokenizer 或正则表 ...

  4. Jquery - 添加属性、添加class、添加Css

    一.设置属性: 方式一  jQuery 代码: $("img").attr({ src: "test.jpg", alt: "Test Image&q ...

  5. 大数据搜索引擎之elasticsearch使用篇(一)

    作者:yanzm 原文来自:https://bbs.ichunqiu.com/thread-42421-1-1.html 1.基础介绍 本期,我们将着重介绍elasticsearch的基本使用方法. ...

  6. jQuery应用实例5:表单验证

    1.validation插件的使用: 入门案例: <html> <head> <meta charset="UTF-8"> <title& ...

  7. MySQL程序端启动密码错误解决方法

    MySQL程序端启动密码错误解决方法 一般启动MySQL程序端,都是用mysql -uroot -p命令,当然前提是你的环境变量已经配好了. 为了连接服务器,当调用mysql时,通常需要提供一个MyS ...

  8. [转载]Apple Watch 开发详解

    Apple Watch 开发详解 Apple Watch现在对于第三方开发者来说更多的还是一块额外的屏幕.暂时WatchKit没有能给出足够的接口.现在Watch App的主要运算逻辑需要依赖iPho ...

  9. (转)10大H5前端框架

    http://www.cnblogs.com/kingboy2008/p/5261771.html 作为一名做为在前端死缠烂打6年并且懒到不行的攻城士,这几年我还是阅过很多同门从知名到很知名的各种前端 ...

  10. EIGRP路由协议的简单理解及应用

    1.EIGRP 增强型内部网关路由协议 他是动态路由协议,是思科私有的路由协议(2013年已经公有化) 特点:   1)路由更新:闪速更新:触发式更新:路由增量更新 2)协议更新采用组播地址来维持EI ...