洛谷P4424 [HNOI/AHOI2018]寻宝游戏(思维题)
题意
Sol
神仙题Orz
Orz zbq爆搜70。。
考虑"与"和"或"的性质
\(0 \& 0 = 0, 1 \& 0 = 0\)
\(0 \mid 1 = 1, 1 \mid 1 = 1\)
也就是说某一个数\(\& 0\)之后不管之前是什么,现在的值变为\(0\)
某一个数\(\mid 1\)之后不管之前的是什么,现在的值变为\(1\)
继续考虑
\(0 \& 1 = 0, 1 \& 1 = 1\)
\(0 \mid 0 = 0, 1 \mid 0 = 1\)
这个时候我们把\(\&\)看做是1,\(\mid\)看做是\(0\)
那么对于上面这两条式子,可以看出若某个数和前面的运算符相同,之前的值不会发生改变
这时候考虑如何计算答案,对于每次询问,若某一位上是\(1\)
那么我们把每一列上的数和他之前的操作符分别拿出来看成一些序列,显然这个序列要满足最后一个\(\mid 1\)要在\(\& 0\)之后
那么这两个序列应该长这个样子:
\(101010 \dots 0 \dots 1\)
\(101010 \dots 1 \dots 0\)
我们会惊奇的发现,第一个式子一定大于第二式子。同理如果询问的位置是\(0\)的话,第一个式子应该小于第二个式子
又因为第二个式子的\(0/1\)可以任意取。那么答案应该是\(min_1 - max_0\),\(min_1\)表示询问位置上的值是\(1\)对应的列的最小值(每一列的第一行是最低位)。
这样的复杂度是\(O(nmq)\)
实际上每次询问至于每一列的大小有关,我们可以先按照字符串的大小排一遍序(搞出类似后缀数组中的sa和rak数组),这样每次询问就只需要计算两个串的答案了
复杂度:\(O(mn\log m + mq)\)
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN = 5e5 + 10, INF = 1e9 + 7, mod = 1000000007;
template<typename A, typename B> inline void chmax(A &x, B y) {
x = x > y ? x : y;
}
template<typename A, typename B> inline void chmin(A &x, B y) {
x = x < y ? x : y;
}
template<typename A, typename B> inline void add2(A &x, B y) {
x = (x + y >= mod ? x + y - mod : x + y);
}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, Q, v[MAXN], rak[MAXN], po2[MAXN], sa[MAXN], val[MAXN];
char a[1002][5002], q[5001];
int comp(const int &x, const int &y) {
for(int i = N; i >= 1; i--)
if(a[i][x] == '0' && a[i][y] == '1') return 1;
else if(a[i][x] == '1' && a[i][y] == '0') return 0;
return 0;
}
int trans(int id) {
int ans = 0;
for(int i = N; i >= 1; i--)
if(a[i][id] == '1') add2(ans, po2[i - 1]);
return ans;
}
int main() {
// freopen("a.in", "r", stdin);
N = read(); M = read(); Q = read(); po2[0] = 1;
for(int i = 1; i <= N; i++) scanf("%s", a[i] + 1), po2[i] = (po2[i - 1] * 2) % mod;
for(int i = 1; i <= N; i++) a[i][M + 1] = '1', a[i][0]= '0';
for(int i = 1; i <= M + 1; i++) sa[i] = i;
sort(sa + 1, sa + M + 2, comp);
for(int i = 1; i <= M + 1; i++) rak[sa[i]] = i;
for(int i = 1; i <= M + 1; i++) val[i] = trans(i); val[M + 1]++;//不++就比答案少1,加了莫名其妙就过了。。。
for(int i = 1; i <= Q; i++) {
scanf("%s", q + 1);
int r = M + 1, l = 0;
for(int j = 1; j <= M; j++)
if(q[j] == '1') chmin(r, rak[j]);
else chmax(l, rak[j]);
if(l > r) puts("0");
else cout << (val[sa[r]] - val[sa[l]] + mod) % mod << '\n';
}
return 0;
}
/*
3
0 1 1
5 7 3
*/
洛谷P4424 [HNOI/AHOI2018]寻宝游戏(思维题)的更多相关文章
- [Bzoj5285][洛谷P4424][HNOI/AHOI2018]寻宝游戏(bitset)
P4424 [HNOI/AHOI2018]寻宝游戏 某大学每年都会有一次Mystery Hunt的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为新生 ...
- BZOJ5285 & 洛谷4424 & UOJ384:[HNOI/AHOI2018]寻宝游戏——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5285 https://www.luogu.org/problemnew/show/P4424 ht ...
- [洛谷P4436] HNOI/AHOI2018 游戏
问题描述 一次小G和小H在玩寻宝游戏,有n个房间排成一列,编号为1,2,...,n,相邻的房间之间都有一道门.其中一部分门上锁(因此需要有对应的钥匙才能开门),其余的门都能直接打开.现在小G告诉了小H ...
- 【洛谷4424】[HNOI_AHOI2018]寻宝游戏(我也不知道括号里该写啥)
题目 洛谷 4424 分析 感觉思路比较神仙. 对于按位与和按位或两种运算,显然每一位是独立的,可以分开考虑. 对于某一位,「与 \(0\)」会将这一位变成 \(0\),「或 \(1\)」会将这一位变 ...
- 【洛谷4424】[HNOI/AHOI2018] 寻宝游戏(位运算思维题)
点此看题面 大致题意: 给你\(n\)个\(m\)位二进制数.每组询问给你一个\(m\)位二进制数,要求你从\(0\)开始,依次对于这\(n\)个数进行\(and\)或\(or\)操作,问有多少种方案 ...
- 洛谷 P4437 [HNOI/AHOI2018]排列(贪心+堆,思维题)
题面传送门 开始 WA ycx 的遗产(bushi 首先可以将题目转化为图论模型:\(\forall i\) 连边 \(a_i\to i\),然后求图的一个拓扑序 \(b_1,b_2,\dots b_ ...
- 洛谷P4438 [HNOI/AHOI2018]道路(dp)
题意 题目链接 Sol 每当出题人想起他出的HNOI 2018 Day2T3,他都会激动的拍打着轮椅 读题比做题用时长系列... \(f[i][a][b]\)表示从根到\(i\)的路径上,有\(a\) ...
- 洛谷P4425 [HNOI/AHOI2018]转盘(线段树)
题意 题目链接 Sol 首先猜一个结论:对于每次询问,枚举一个起点然后不断等到某个点出现时才走到下一个点一定是最优的. 证明不会,考场上拍了3w组没错应该就是对的吧... 首先把数组倍长一下方便枚举起 ...
- [HNOI/AHOI2018]寻宝游戏
题目大意: $n(n\le1000)$个$m(m\le5000)$位的二进制数,第$0$个数为$0$.用$\wedge$和$\vee$将这些数连接起来.$q(q\le1000)$次询问,每次给定一个$ ...
随机推荐
- WPF简单的分页控件实现
XAML代码(使用ItemsControl控件实现): <UserControl x:Class="SunCreate.Vipf.Client.UI.CityDoor.PageCont ...
- 如何正确的使用Ubuntu以及安装常用的渗透工具集.
文章来源i春秋 入坑Ubuntu半年多了 记得一开始学的时候基本一星期重装三四次=-= 尴尬了 觉得自己差不多可以的时候 就吧Windows10干掉了 c盘装Ubuntu 专心学习. 这里主要来 ...
- Java学习笔记50(DBCP连接池)
实际开发中,连接数据库是十分消耗资源的操作,但是,我们又需要频繁地连接数据库 这时候,为了提高效率,这里就会采用连接池技术: 连接池地通俗理解: 一个池里面放入很多的连接,需要哪一个取出来用即可,用完 ...
- springboot知识点补充(一)
测试配置 @RunWith(SpringRunner.class) @SpringBootTest @Configuration @ActiveProfiles("test") p ...
- Java-大数据方向学习和已掌握知识点整理
现在的项目是大数据相关项目,一路走来从最初的 C 开发到 Java 再到 大数据,不容易 大数据方向知识点太多,优先掌握了主流的一些技术并运用到了现在的项目中 另外也整理了一份java开发和项目管理方 ...
- 14-使用glusterfs做持久化存储
使用glusterfs做持久化存储 我们复用kubernetes的三台主机做glusterfs存储. 以下步骤参考自:https://www.xf80.com/2017/04/21/kubernete ...
- fidder显示 请求响应时间
在顶部的工具栏找到 Rules->CustomRules,第一次打开会弹出提示要安装Fiddler Script 工具,选择 [否], 就会打开 CustomRules.js 文件. 在 cla ...
- Xamarin.Android 无法检索到 Resource 问题
错误提示:当前上下文中不存在名称"Resource" 解决方法: 1.看是否有其他错误,如果有其他错误优先解决.(其他错误导致无法感知到Resource) 2.重新生成解决方案.( ...
- Docker数据卷容器备份、恢复
1.备份数据卷容器 使用数据卷来备份数据,通过指定本地的一个文件路径,对应到容器中的路径,运行tar命令将重要的文件打包备份. $ cd /home/xm6f/dev $ docker run --v ...
- 信号为E时,如何让语音识别脱“网”而出?
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯教育云发表于云+社区专栏 一般没有网络时,语音识别是这样的 ▽ 而同等环境下,嵌入式语音识别,是这样的 ▽ 不仅可以帮您边说边识. ...