前言

致力于滤波器的剪枝,论文的方法不改变原始网络的结构。论文的方法是基于下一层的统计信息来进行剪枝,这是区别已有方法的。

VGG-16上可以减少3.31FLOPs和16.63倍的压缩,top-5的准确率只下降0.52%。在ResNet-50上可以降低超过一半的参数量和FLOPs,top-5的准确率只降低1%。

如上图所示,在虚线框中找到那些弱通道(weak channels)和他们对应的滤波器(黄色高亮部分),这些通道和对应的滤波器对整体性能贡献较小,因此可以丢弃,这样就得到一个剪枝后的模型,然后通过微调(fine-tune)恢复模型的准确率。

ThiNet框架

(1)滤滤波器选择

不同于已有的方法(使用layer(i)层的统计数据对layer(i)滤波器进行剪枝),论文对layer(i+1)的统计信息来对layer(i)层进行剪枝。思路如下:如果可以使用layer(i+1)的子集通道(subset channels)的输入来逼近layer(i+1)的输出,那么其它的通道就可以从layer(i+1)的输入移除,而layer(i+1)的输入是由layer(i)的滤波器产生的。

(2)剪枝

在layer(i+1)的弱通道和其对应的layer(i)层的滤波器将被去除,模型将变得更小。剪枝后的网络的结构不变,但拥有较少的滤波器和通道数。

(3)微调

通过大量数据的训练来恢复网络性能

数据驱动的通道选择

使用来表示layer(i)的卷积过程,其中表示输入的张量(tensor),是一组KxK的核大小的滤波器,使用D个channels生成新的张量。

我们的目标是移除中不重要的滤波器。可以看出,如果中的一个滤波器被移除了,在中相应的通道也会被移除。这样的操作下,layer(i+1)的滤波器的数目和他输出张量的大小保持不变,因此也保持不变。

收集训练样本

通道选择——贪心算法

最小化重构误差

ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression笔记的更多相关文章

  1. 论文笔记——ThiNet: A Filter Level Pruning Method for Deep Neural Network Compreesion

    论文地址:https://arxiv.org/abs/1707.06342 主要思想 选择一个channel的子集,然后让通过样本以后得到的误差最小(最小二乘),将裁剪问题转换成了优化问题. 这篇论文 ...

  2. 论文笔记——A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding

    论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Prunin ...

  3. 用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification

    This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima ...

  4. 深度神经网络如何看待你,论自拍What a Deep Neural Network thinks about your #selfie

    Convolutional Neural Networks are great: they recognize things, places and people in your personal p ...

  5. A Survey of Model Compression and Acceleration for Deep Neural Network时s

    A Survey of Model Compression and Acceleration for Deep Neural Network时s 本文全面概述了深度神经网络的压缩方法,主要可分为参数修 ...

  6. 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement

    论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...

  7. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  8. What are the advantages of ReLU over sigmoid function in deep neural network?

    The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...

  9. 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

随机推荐

  1. MyBatis实现模糊查询的几种方式

    在学习MyBatis过程中想实现模糊查询,可惜失败了.后来上百度上查了一下,算是解决了.记录一下MyBatis实现模糊查询的几种方式. 数据库表名为test_student,初始化了几条记录,如图: ...

  2. JFreeChart柱状图单组柱子的不同颜色显示

    JFreeChart柱状图中单组柱子用不同颜色来显示的实现方法是自定义一个Renderer来继承BarRenderer类,然后重载getItemPaint(int i,int j)方法. 实现效果如下 ...

  3. python第四十九课——对象序列化与反序列化

    person.py class Person: def __init__(self,*args,**kwargs): print('我是Person类的构造...') # self.name=name ...

  4. EJB3.0中的session bean以及MDB解析

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/aboy123/article/details/24587133 大型业务系统面临的主要问题就是高并发 ...

  5. sed命令替换字符包含斜杠\,引号的处理方法

    在字符替换中,可能会遇见引号,“/”等的替换,这时应该注意,sed的命令原型是: sed -i  "s/oldstring/goalstring/g" file 如果一个路径是da ...

  6. LCA树链剖分

    LCA(Lowest Common Ancestor 最近公共祖先)定义如下:在一棵树中两个节点的LCA为这两个节点所有的公共祖先中深度最大的节点. 比如这棵树 结点5和6的LCA是2,12和7的LC ...

  7. leetcode 131. Palindrome Partitioning 、132. Palindrome Partitioning II

    131. Palindrome Partitioning substr使用的是坐标值,不使用.begin()..end()这种迭代器 使用dfs,类似于subsets的题,每次判断要不要加入这个数 s ...

  8. VS2017 安装visualSVN 6.1.1 for visual studio 2017

    1.官网下载地址:https://www.visualsvn.com/visualsvn/download/ 2.安装

  9. 监控虚拟机跟外部的tcp连接

    1.监控虚拟机跟外部的tcp连接,如果连接数超过阈值,就在FORWARD把ip DROP ,并且发送邮件 root@InternetGateway:~# cat /root/scripts/check ...

  10. 浅析单点登录,以及不同二级域名下的SSO实现

    一家公司有多个产品线,就可能要有多个子域名,下头以baidu域名为例,a.baidu.com, b.baidu.com.com 是顶级域名,baidu 就是一个二级域名,a和b就是子域名. 当用户在a ...