1、背景

a、鹅厂近期发布了自己的人工智能 api,包括身份证ocr、名片ocr、文本分析等一堆API,因为前期项目用到图形OCR,遂实现试用了一下,发现准确率还不错,放出来给大家共享一下。

b、基于python3,跟python2还是有些区别。

c、特别需要提到的就是签名生成这块,鹅厂的api说明里写的比较简单,一开始在sign的生成(https://ai.qq.com/doc/auth.shtml)上卡了好几天,后来加的官方群,咨询之后才解决。

2、签名算法

不够150字,那就正好把签名算法这块写一写。

a、官网说明如下:

按URL键值拼接字符串T

依照算法第二步要求,将参数对列表N的参数对进行URL键值拼接,值使用URL编码,URL编码算法用大写字母,例如%E8,而不是小写%e8,得到字符串T如下:

b、实际上:

参数列表是指api中所有除sign之外用到的参数都要参与计算sign。

譬如:

1)文本分析接口有4个字段,拼接串为:

app_id=10000&nonce_str=20e3408a79&text=%E8%85%BE%E8%AE%AF%E5%BC%80%E6%94%BE%E5%B9%B3%E5%8F%B0&time_stamp=1493449657

参数名 参数值
app_id 10000
nonce_str 20e3408a79
text 腾讯开放平台
time_stamp 1493449657

2)身份证ocr接口有6个字段,拼接串为:

app_id=&time_stamp=1511839575&nonce_str=3oxitu0qf198bh24&image=%2F9j%2F4AA************QSkZJRgA9j%2F%2F2Q%3D%3D&card_type=0&sign=2ED0122CD44DCB1FD7BC9AE1D03D64D9

参数名称 是否必选 数据类型 数据约束 示例数据 描述
app_id int 正整数 1000001 应用标识(AppId)
time_stamp int 正整数 1493468759 请求时间戳(秒级)
nonce_str string 非空且长度上限32字节 fa577ce340859f9fe 随机字符串
sign string 非空且长度固定32字节 B250148B284956EC5218D4B0503E7F8A 签名信息,详见接口鉴权
image string 原始图片的base64编码数据(解码后大小上限1MB,支持JPG、PNG、BMP格式) ... 待识别图片
card_type int 整数 0/1 身份证图片类型,0-正面,1-反面

注意区别:不光光是参与计算的字段变化,各字段的排序也不一样。

3、实现代码

在github上上传了一下,https://github.com/jdstkxx/pyTencentAI

# -*- coding: utf-8 -*-

'''
create by : joshua zou
create date : 2017.11.28
Purpose: tecent ai api
''' import requests
import base64
import hashlib
import time
import random
import os,string,glob
from PIL import Image
from io import BytesIO
from urllib.parse import urlencode
from urllib import parse
import json class MsgTencent(object):
def __init__(self,AppID=None,AppKey=None):
'''
改成你自己的API账号、密码
'''
if not AppID: AppID = ''
if not AppKey: AppKey = 'uuuuuuuuuu'
self.app_id= AppID
self.app_key= AppKey
self.img_base64str=None def get_random_str(self):
#随机生成16位字符串
rule = string.ascii_lowercase + string.digits
str = random.sample(rule, 16)
return "".join(str) def get_time_stamp(self):
return str(int(time.time())) def __get_image_base64str__(self,image):
if not isinstance(image,Image):return None
outputBuffer = BytesIO()
bg.save(outputBuffer, format='JPEG')
imgbase64 = base64.b64encode(outputBuffer.getvalue())
return imgbase64 def __get_imgfile_base64str__(self,image):
if not isinstance(image, str): return None
if not os.path.isfile(image): return None with open(image,'rb') as fp:
imgbase64 = base64.b64encode(fp.read())
return imgbase64 def get_img_base64str(self,image):
if isinstance(image, str):
self.img_base64str= self.__get_imgfile_base64str__(image)
elif isinstance(image,Image):
self.img_base64str= self.__get_imgfile_base64str__(image)
return self.img_base64str.decode() # 组装字典,MD5加密方法
'''
======================================
tencent获得参数对列表N(字典升级排序)
======================================
1\依照算法第一步要求,对参数对进行排序,得到参数对列表N如下。
参数名 参数值
app_id 10000
nonce_str 20e3408a79
text 腾讯开放平台
time_stamp 1493449657 2\按URL键值拼接字符串T
依照算法第二步要求,将参数对列表N的参数对进行URL键值拼接,值使用URL编码,URL编码算法用大写字母,例如%E8,而不是小写%e8,得到字符串T如下:
app_id=10000&nonce_str=20e3408a79&text=%E8%85%BE%E8%AE%AF%E5%BC%80%E6%94%BE%E5%B9%B3%E5%8F%B0&time_stamp=1493449657 3\拼接应用密钥,得到字符串S
依照算法第三步要求,将应用密钥拼接到字符串T的尾末,得到字符串S如下。
app_id=10000&nonce_str=20e3408a79&text=%E8%85%BE%E8%AE%AF%E5%BC%80%E6%94%BE%E5%B9%B3%E5%8F%B0&time_stamp=1493449657&app_key=a95eceb1ac8c24ee28b70f7dbba912bf 4\计算MD5摘要,得到签名字符串
依照算法第四步要求,对字符串S进行MD5摘要计算得到签名字符串如。
e8f6f347d549fe514f0c9c452c95da9d 5\转化md5签名值大写
对签名字符串所有字母进行大写转换,得到接口请求签名,结束算法。
E8F6F347D549FE514F0C9C452C95DA9D 6\最终请求数据
在完成签名计算后,即可得到所有接口请求数据,进一步完成API的调用。
text 腾讯开放平台 接口请求数据,UTF-8编码
app_id 10000 应用标识
time_stamp 1493449657 请求时间戳(秒级),用于防止请求重放
nonce_str 20e3408a79 请求随机字符串,用于保证签名不可预测
sign E8F6F347D549FE514F0C9C452C95DA9D 请求签名
'''
def gen_dict_md5(self,req_dict,app_key):
if not isinstance(req_dict,dict) :return None
if not isinstance(app_key,str) or not app_key:return None try:
#方法,先对字典排序,排序之后,写app_key,再urlencode
sort_dict= sorted(req_dict.items(), key=lambda item:item[0], reverse = False)
sort_dict.append(('app_key',app_key))
sha = hashlib.md5()
rawtext= urlencode(sort_dict).encode()
sha.update(rawtext)
md5text= sha.hexdigest().upper()
#print(1)
#字典可以在函数中改写
if md5text: req_dict['sign']=md5text
return md5text
except Exception as e:
return None #生成字典
def gen_req_dict(self, req_dict,app_id=None, app_key=None,time_stamp=None, nonce_str=None):
"""用MD5算法生成安全签名"""
if not req_dict.get('app_id'):
if not app_id: app_id= self.app_id
req_dict['app_id']= app_id #nonce_str 字典无值
if not req_dict.get('time_stamp'):
if not time_stamp: time_stamp= self.get_time_stamp()
req_dict['time_stamp']= time_stamp if not req_dict.get('nonce_str'):
if not nonce_str: nonce_str= self.get_random_str()
req_dict['nonce_str']= nonce_str
#app_key 取系统参数。
if not app_key: app_key= self.app_key
md5key= self.gen_dict_md5(req_dict, app_key)
return md5key
'''
基本文本分析
===========
分词 对文本进行智能分词识别,支持基础词与混排词粒度 https://api.ai.qq.com/fcgi-bin/nlp/nlp_wordseg text
词性标注 对文本进行分词,同时为每个分词标注正确的词性 https://api.ai.qq.com/fcgi-bin/nlp/nlp_wordpos text
专有名词识别 对文本进行专有名词的分词识别,找出文本中的专有名词 https://api.ai.qq.com/fcgi-bin/nlp/nlp_wordner text
同义词识别 识别文本中存在同义词的分词,并返回相应的同义词 https://api.ai.qq.com/fcgi-bin/nlp/nlp_wordsyn text 计算机视觉--OCR识别
====================
通用OCR识别 识别上传图像上面的字段信息 https://api.ai.qq.com/fcgi-bin/ocr/ocr_generalocr image
身份证OCR识别 识别身份证图像上面的详细身份信息 https://api.ai.qq.com/fcgi-bin/ocr/ocr_idcardocr image,card_type(身份证,0-正面,1-反面)
名片OCR识别 识别名片图像上面的字段信息 https://api.ai.qq.com/fcgi-bin/ocr/ocr_bcocr image
行驶证驾驶证OCR识别 识别行驶证或驾驶证图像上面的字段信息 https://api.ai.qq.com/fcgi-bin/ocr/ocr_driverlicenseocr image,type(识别类型,0-行驶证识别,1-驾驶证识别)
营业执照OCR识别 识别营业执照上面的字段信息 https://api.ai.qq.com/fcgi-bin/ocr/ocr_bizlicenseocr image
银行卡OCR识别 识别银行卡上面的字段信息 https://api.ai.qq.com/fcgi-bin/ocr/ocr_creditcardocr image
'''
#改成你自己的API账号、密码
APPID=''
APPKEY='UUUUUUUUU'
TencentAPI={
#基本文本分析API
"nlp_wordseg": {
'APINAME':'分词',
'APIDESC': '对文本进行智能分词识别,支持基础词与混排词粒度',
'APIURL': 'https://api.ai.qq.com/fcgi-bin/nlp/nlp_wordseg',
'APIPARA': 'text'
},
"nlp_wordpos": {
'APINAME':'词性标注',
'APIDESC': '对文本进行分词,同时为每个分词标注正确的词性',
'APIURL': 'https://api.ai.qq.com/fcgi-bin/nlp/nlp_wordpos',
'APIPARA': 'text'
},
'nlp_wordner': {
'APINAME':'专有名词识别',
'APIDESC': '对文本进行专有名词的分词识别,找出文本中的专有名词',
'APIURL': 'https://api.ai.qq.com/fcgi-bin/nlp/nlp_wordner',
'APIPARA': 'text'
},
'nlp_wordsyn': {
'APINAME':'同义词识别',
'APIDESC': '识别文本中存在同义词的分词,并返回相应的同义词',
'APIURL': 'https://api.ai.qq.com/fcgi-bin/nlp/nlp_wordsyn',
'APIPARA': 'text'
}, #计算机视觉--OCR识别API
"ocr_generalocr": {
'APINAME':'通用OCR识别',
'APIDESC': '识别上传图像上面的字段信息',
'APIURL': 'https://api.ai.qq.com/fcgi-bin/ocr/ocr_generalocr',
'APIPARA': 'image'
},
"ocr_idcardocr": {
'APINAME':'身份证OCR识别',
'APIDESC': '识别身份证图像上面的详细身份信息',
'APIURL': 'https://api.ai.qq.com/fcgi-bin/ocr/ocr_idcardocr',
'APIPARA': 'image,card_type'
},
"ocr_bcocr": {
'APINAME':'名片OCR识别',
'APIDESC': '识别名片图像上面的字段信息',
'APIURL': 'https://api.ai.qq.com/fcgi-bin/ocr/ocr_bcocr',
'APIPARA': 'image'
},
"ocr_driverlicenseocr":{
'APINAME':'行驶证驾驶证OCR识别',
'APIDESC': '识别行驶证或驾驶证图像上面的字段信息',
'APIURL': 'https://api.ai.qq.com/fcgi-bin/ocr/ocr_driverlicenseocr',
'APIPARA': 'image,type'
},
"ocr_bizlicenseocr":{
'APINAME':'营业执照OCR识别',
'APIDESC': '识别营业执照上面的字段信息',
'APIURL': 'https://api.ai.qq.com/fcgi-bin/ocr/ocr_bizlicenseocr',
'APIPARA': 'image'
},
"ocr_creditcardocr":{
'APINAME':'银行卡OCR识别',
'APIDESC': '识别银行卡上面的字段信息',
'APIURL': 'https://api.ai.qq.com/fcgi-bin/ocr/ocr_creditcardocr',
'APIPARA': 'image'
},
} def ExecTecentAPI(*arg,**kwds):
if kwds.get('Apiname'): apiname= kwds.pop('Apiname') url = TencentAPI[apiname]['APIURL']
name = TencentAPI[apiname]['APINAME']
desc= TencentAPI[apiname]['APIDESC']
para= TencentAPI[apiname]['APIPARA'] tx= MsgTencent(APPID,APPKEY) Req_Dict={}
for key in para.split(','):
value=None
print (kwds)
if kwds.get(key): value = kwds.pop(key)
if key=='image':
#图像获取base64
value= tx.get_img_base64str(value)
if key=='text':
#文本进行GBK编码
value= value.encode('gbk') Req_Dict[key]=value
print (key,value,Req_Dict[key]) #生成请求包
sign= tx.gen_req_dict(req_dict=Req_Dict)
resp = requests.post(url,data=Req_Dict,verify=False)
print (name+'执行结果'+resp.text)
return resp.text if __name__ == "__main__":
#名片ocr
file= r'名片.jpg'
rest = ExecTecentAPI(Apiname='ocr_bcocr',image=file)
#文本分析
rest = ExecTecentAPI(Apiname='nlp_wordseg',text='上帝保佑你')

Python3 下实现 腾讯人工智能API 调用的更多相关文章

  1. 腾讯QQAndroid API调用实例(QQ分享无需登录)

    腾讯QQAndroid API调用实例(QQ分享无需登录)   主要分为两个步骤: 配置Androidmanifest.xml 修改activity里边代码 具体修改如下:   1.Activity代 ...

  2. 腾讯地图 API 调用入门

    本文仅为腾讯地图 API 调用入门,如需进阶学习,请在腾讯位置服务网站上进行学习. 登陆网址 https://lbs.qq.com/ 点击右上角的登陆按钮,需要进行注册按照流程进行就好. 完成之后,选 ...

  3. 讯飞云 API 语音听写 python3 调用例程

    #!/usr/bin/python3 # -*- coding: UTF-8 -*- import requests import time import gzip import urllib imp ...

  4. 反射实现Model修改前后的内容对比 【API调用】腾讯云短信 Windows操作系统下Redis服务安装图文详解 Redis入门学习

    反射实现Model修改前后的内容对比   在开发过程中,我们会遇到这样一个问题,编辑了一个对象之后,我们想要把这个对象修改了哪些内容保存下来,以便将来查看和追责. 首先我们要创建一个User类 1 p ...

  5. Python3 下实现 Tencent AI 调用

    1.背景 a.鹅厂近期发布了自己的AI api,包括身份证ocr.名片ocr.文本分析等一堆API,因为前期项目用到图形OCR,遂实现试用了一下,发现准确率还不错,放出来给大家共享一下. b.基于py ...

  6. python3下搜狗AI API实现

    1.背景 a.搜狗也发布了自己的人工智能 api,包括身份证ocr.名片ocr.文本翻译等API,初试感觉准确率一般般. b.基于python3. c.也有自己的签名生成这块,有了鹅厂的底子,相对写起 ...

  7. 微信小程序wx.getLocation()获取经纬度及JavaScript SDK调用腾讯地图API获取某一类地址

    简介 腾讯位置服务为微信小程序提供了基础的标点能力.线和圆的绘制接口等地图组件和位置展示.地图选点等地图API位置服务能力支持,使得开发者可以自由地实现自己的微信小程序产品. 在此基础上,腾讯位置服务 ...

  8. 30行代码消费腾讯人工智能开放平台提供的自然语言处理API

    腾讯人工智能AI开放平台上提供了很多免费的人工智能API,开发人员只需要一个QQ号就可以登录进去使用. 腾讯人工智能AI开放平台的地址:https://ai.qq.com/ 里面的好东西很多,以自然语 ...

  9. MVC项目实践,在三层架构下实现SportsStore-09,ASP.NET MVC调用ASP.NET Web API的查询服务

    ASP.NET Web API和WCF都体现了REST软件架构风格.在REST中,把一切数据视为资源,所以也是一种面向资源的架构风格.所有的资源都可以通过URI来唯一标识,通过对资源的HTTP操作(G ...

随机推荐

  1. GO入门——6. struct与方法

    1 struct Go 中的struct与C中的struct非常相似,并且Go没有class 使用 type struct{} 定义结构,名称遵循可见性规则 支持指向自身的指针类型成员 支持匿名结构, ...

  2. Kafka实战-简单示例

    1.概述 上一篇博客<Kafka实战-Kafka Cluster>中,为大家介绍了Kafka集群的安装部署,以及对Kafka集群Producer/Consumer.HA等做了相关测试,今天 ...

  3. Linux 常用命令 | mkdir/rmdir/touch 的使用

    一.创建空目录 命令:mkdir 原意:make directories 所在路径: /bin/mkdir 1.创建空目录 ​ 2.递归创建空目录 选项:-p 如果直接使用mkdir 创建空目录: W ...

  4. C++ 重载运算符简单举例

    我们可以重定义或重载大部分 C++ 内置的运算符.这样,就能使用自定义类型的运算符. 重载的运算符是带有特殊名称的函数,函数名是由关键字 operator 和其后要重载的运算符符号构成的.与其他函数一 ...

  5. SignalR的简单实现消息广播

    之前由于一个项目的需要(简单说一下,一个网页游戏,裁判的页面点击开始按钮,玩家便可以开始游戏),研究了很久,最终一个同事跟我推荐了SignalR.距离项目结束已经有一段时间了,再来回顾一下Signal ...

  6. HTTP 错误 500 调用loadlibraryex失败

    HTTP 错误 500.0 - Internal Server Error 调用 LoadLibraryEx 失败,在 ISAPI 筛选器 C:\Windows\Microsoft.NET\Frame ...

  7. fllume 入门

    flume flume 简介及核心概念 什么是flume Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统,目前是Apache的顶级项目.Flume支持 ...

  8. 【Tomcat】详解tomcat的连接数与线程池

    前言 在使用tomcat时,经常会遇到连接数.线程数之类的配置问题,要真正理解这些概念,必须先了解Tomcat的连接器(Connector). Connector的主要功能,是接收连接请求,创建Req ...

  9. HDU6213

    Chinese Zodiac Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)To ...

  10. tortoisegit安装

    1.下载tortoisegit:https://tortoisegit.org/download/ 2.下载git 64位 3. 双击开始安装,选择默认,点击下一步 4.接着是选择安装目录,可以保持默 ...