A. Okabe and Future Gadget Laboratory
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Okabe needs to renovate the Future Gadget Laboratory after he tried doing some crazy experiments! The lab is represented as an n by nsquare grid of integers. A good lab is defined as a lab in which every number not equal to 1 can be expressed as the sum of a number in the same row and a number in the same column. In other words, for every x, y such that 1 ≤ x, y ≤ n and ax, y ≠ 1, there should exist two indices s and t so that ax, y = ax, s + at, y, where ai, j denotes the integer in i-th row and j-th column.

Help Okabe determine whether a given lab is good!

Input

The first line of input contains the integer n (1 ≤ n ≤ 50) — the size of the lab.

The next n lines contain n space-separated integers denoting a row of the grid. The j-th integer in the i-th row is ai, j (1 ≤ ai, j ≤ 105).

Output

Print "Yes" if the given lab is good and "No" otherwise.

You can output each letter in upper or lower case.

Examples
input
3
1 1 2
2 3 1
6 4 1
output
Yes
input
3
1 5 2
1 1 1
1 2 3
output
No
Note

In the first sample test, the 6 in the bottom left corner is valid because it is the sum of the 2 above it and the 4 on the right. The same holds for every number not equal to 1 in this table, so the answer is "Yes".

In the second sample test, the 5 cannot be formed as the sum of an integer in the same row and an integer in the same column. Thus the answer is "No".

题意:

懒得说。

思路:

四重循环暴力;

实现代码:

#include<iostream>
using namespace std; int main(){
int m,i,j,k,l,a[][];
cin>>m;
for(i=;i<m;i++){
for(j=;j<m;j++){
cin>>a[i][j];
}
}
int flag = ;
for(i=;i<m;i++){
for(j=;j<m;j++){
if(a[i][j]!=){
flag = ;
for(k=;k<m;k++){
for(l=;l<m;l++){
if(a[i][k]+a[l][j]==a[i][j])
flag = ;
}
}
if(flag==){
cout<<"No"<<endl;
return ;
}
}
}
}
cout<<"Yes"<<endl;
return ; }
B. Okabe and Banana Trees
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Okabe needs bananas for one of his experiments for some strange reason. So he decides to go to the forest and cut banana trees.

Consider the point (x, y) in the 2D plane such that x and y are integers and 0 ≤ x, y. There is a tree in such a point, and it has x + ybananas. There are no trees nor bananas in other points. Now, Okabe draws a line with equation . Okabe can select a single rectangle with axis aligned sides with all points on or under the line and cut all the trees in all points that are inside or on the border of this rectangle and take their bananas. Okabe's rectangle can be degenerate; that is, it can be a line segment or even a point.

Help Okabe and find the maximum number of bananas he can get if he chooses the rectangle wisely.

Okabe is sure that the answer does not exceed 1018. You can trust him.

Input

The first line of input contains two space-separated integers m and b (1 ≤ m ≤ 1000, 1 ≤ b ≤ 10000).

Output

Print the maximum number of bananas Okabe can get from the trees he cuts.

Examples
input
1 5
output
30
input
2 3
output
25
Note

The graph above corresponds to sample test 1. The optimal rectangle is shown in red and has 30 bananas.

思路:

推公式。

实现代码:

#include<iostream>
using namespace std;
#define ll long long
ll m,b;
ll num(ll x){
ll sum1 = ;
//cout<<"x:"<<x<<endl;
sum1 = (b-x/m)*(b-x/m+)/*(x+)+(b-x/m+)*(+x)*x/;
return sum1;
}
int main(){
ll sum=,maxx,i,j;
cin>>m>>b;
ll k = -m;
ll maxn = -;
while(k<=m*b){
k+=m;
if(num(k)>maxn){
maxn = num(k);
}
}
cout<<maxn<<endl;
return ;
}
C. Okabe and Boxes
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Okabe and Super Hacker Daru are stacking and removing boxes. There are n boxes numbered from 1 to n. Initially there are no boxes on the stack.

Okabe, being a control freak, gives Daru 2n commands: n of which are to add a box to the top of the stack, and n of which are to remove a box from the top of the stack and throw it in the trash. Okabe wants Daru to throw away the boxes in the order from 1 to n. Of course, this means that it might be impossible for Daru to perform some of Okabe's remove commands, because the required box is not on the top of the stack.

That's why Daru can decide to wait until Okabe looks away and then reorder the boxes in the stack in any way he wants. He can do it at any point of time between Okabe's commands, but he can't add or remove boxes while he does it.

Tell Daru the minimum number of times he needs to reorder the boxes so that he can successfully complete all of Okabe's commands. It is guaranteed that every box is added before it is required to be removed.

Input

The first line of input contains the integer n (1 ≤ n ≤ 3·105) — the number of boxes.

Each of the next 2n lines of input starts with a string "add" or "remove". If the line starts with the "add", an integer x (1 ≤ x ≤ n) follows, indicating that Daru should add the box with number x to the top of the stack.

It is guaranteed that exactly n lines contain "add" operations, all the boxes added are distinct, and n lines contain "remove" operations. It is also guaranteed that a box is always added before it is required to be removed.

Output

Print the minimum number of times Daru needs to reorder the boxes to successfully complete all of Okabe's commands.

Examples
input
3
add 1
remove
add 2
add 3
remove
remove
output
1
input
7
add 3
add 2
add 1
remove
add 4
remove
remove
remove
add 6
add 7
add 5
remove
remove
remove
output
2
Note

In the first sample, Daru should reorder the boxes after adding box 3 to the stack.

In the second sample, Daru should reorder the boxes after adding box 4 and box 7 to the stack.

解题思路:

要按顺序输出1-n,那么当栈顶元素和当前要输出的相同时,直接输出就行,不同时,则需要进行排序操作,默认最优排序使栈中所有元素都可以按指定顺序输出,记一次操作,问需要几次操作。

实现代码:

#include<bits/stdc++.h>
using namespace std;
stack<int>sta;
int main()
{
int m,i,x,ans = ;
int sum = ;
char s[];
scanf("%d",&m);
for(i=;i<m*;i++){
scanf("%s",s);
if(s[]=='a'){
scanf("%d",&x);
sta.push(x);
}
else{
ans ++;
if(sta.empty()==)
continue;
if(sta.top()!=ans){
sum++;
while(sta.empty()==){
sta.pop();}
}
else{
sta.pop();
}
}
}
printf("%d\n",sum);
return ;
}

Codeforces Round #420 (Div. 2) A,B,C的更多相关文章

  1. 【Codeforces Round #420 (Div. 2) C】Okabe and Boxes

    [题目链接]:http://codeforces.com/contest/821/problem/C [题意] 给你2*n个操作; 包括把1..n中的某一个数压入栈顶,以及把栈顶元素弹出; 保证压入和 ...

  2. 【Codeforces Round #420 (Div. 2) B】Okabe and Banana Trees

    [题目链接]:http://codeforces.com/contest/821/problem/B [题意] 当(x,y)这个坐标中,x和y都为整数的时候; 这个坐标上会有x+y根香蕉; 然后给你一 ...

  3. 【Codeforces Round #420 (Div. 2) A】Okabe and Future Gadget Laboratory

    [题目链接]:http://codeforces.com/contest/821/problem/A [题意] 给你一个n*n的数组; 然后问你,是不是每个位置(x,y); 都能找到一个同一行的元素q ...

  4. Codeforces Round #420 (Div. 2) - C

    题目链接:http://codeforces.com/contest/821/problem/C 题意:起初有一个栈,给定2*n个命令,其中n个命令是往栈加入元素,另外n个命令是从栈中取出元素.你可以 ...

  5. Codeforces Round #420 (Div. 2) - E

    题目链接:http://codeforces.com/contest/821/problem/E 题意:起初在(0,0),现在要求走到(k,0),问你存在多少种走法. 其中有n条线段,每条线段为(a, ...

  6. Codeforces Round #420 (Div. 2) - B

    题目链接:http://codeforces.com/contest/821/problem/B 题意:二维每个整点坐标(x,y)拥有的香蕉数量为x+y,现在给你一个直线方程的m和b参数,让你找一个位 ...

  7. Codeforces Round #420 (Div. 2) - A

    题目链接:http://codeforces.com/contest/821/problem/A 题意:给定一个n*n的矩阵. 问你这个矩阵是否满足矩阵里的元素除了1以外,其他元素都可以在该元素的行和 ...

  8. Codeforces Round #420 (Div. 2)

    /*************************************************************************************************** ...

  9. Codeforces Round #420 (Div. 2) E. Okabe and El Psy Kongroo 矩阵快速幂优化dp

    E. Okabe and El Psy Kongroo time limit per test 2 seconds memory limit per test 256 megabytes input ...

随机推荐

  1. 在VS2017上使用C#调用非托管C++生成的DLL文件(图文讲解)

    原文:在VS2010上使用C#调用非托管C++生成的DLL文件(图文讲解) 背景 在项目过程中,有时候你需要调用非C#编写的DLL文件,尤其在使用一些第三方通讯组件的时候,通过C#来开发应用软件时,就 ...

  2. Luogu P3388 【模板】割点(割顶)

    一道求割点的板子题.还是采用经典的Tarjan算法. 首先大致和Tarjan求强连通分量相似,都是用\(dfn_x\)表示访问到\(x\)的时间(时间戳),\(low_x\)表示通过\(x\)回边能走 ...

  3. SPI内容随笔

    关于SPI的通信: SPI采用的是主从模式的同步通信,通过时钟来控制:一般情况下,使用双向全双工,收发的数据放在缓冲器FIFO中.数据的传输是主SPI的时钟在控制,从机是不能产生时钟的,如果没有时钟, ...

  4. SJP's Blog

    This is SJP's blog. Here is a mirror web of his blog.

  5. ES7 之 Async/await 的使用

    在 js 异步请求数据时,通常,我们多采用回调函数的方式解决,但是,如果有多个回调函数嵌套时,代码显得很不优雅,维护成本也相应较高. ES6 提供的 Promise 方法和 ES7 提供的 Async ...

  6. 【下一代核心技术DevOps】:(二)Rancher的应用及优点简介

    1.环境选择 安装Rancher环境,一定要在干净的linux主机上进行,避免出现因配置导致的莫名其妙的问题.服务器操作系统建议CentOS7.4(内核3.10以上)低于这个版本的系统 如7.3 7. ...

  7. BugkuCTF 计算器

    前言 写了这么久的web题,算是把它基础部分都刷完了一遍,以下的几天将持续更新BugkuCTF WEB部分的题解,为了不影响阅读,所以每道题的题解都以单独一篇文章的形式发表,感谢大家一直以来的支持和理 ...

  8. C语言----数据类型(基础篇一)

    C语言的入门程序模板 #include <stdio.h> /*使用或者包含系统里面的程序*/ main() /*程序入口点*/ { /*起点*/ +; /*叫计算机执行的指令*/ } / ...

  9. MongoDB集群运维笔记

    前面的文章介绍了MongoDB副本集和分片集群的做法,下面对MongoDB集群的日常维护操作进行小总结: MongDB副本集故障转移功能得益于它的选举机制.选举机制采用了Bully算法,可以很方便从分 ...

  10. shell脚本之特殊符号总结性梳理

    # 井号 (comments) 这几乎是个满场都有的符号#!/bin/bash 井号也常出现在一行的开头,或者位于完整指令之后,这类情况表示符号后面的是注解文字,不会被执行. # This line ...