把悬线法这个坑填了,还是很简单的 qwq。

悬线法一般解决有一定约束条件的最大矩形问题。悬线的定义是从一个点一直往上走直到边界或者不符合条件结束。

炒个例子,在这题里面比如说有这样一个矩形

0 1 0 1
0 1 0 1
1 0 1 0
1 1 1 1

则第 \(4\) 行第 \(3\) 列的点的悬线就是这个

1
0
1(这就是起始的点

我们定义 \(up_{i, j}\) 为 \(i\) 行 \(j\) 列的点的悬线长度。

显而易见,如果可以转移,则有 \(up_{i, j} = up_{i - 1, j} + 1\)。


由于是矩形,我们还要枚举悬线往左移动能到的极远处于往右移动的极远处。

令 \(le_{i, j}\) 为第 \(i\) 行 \(j\) 列的点的悬线往左移动的极远处,\(ri_{i, j}\) 是往右的极远处。

如果 \(a_{i, j} \not = a_{i - 1, j}\),则有 \(le_{i, j} = \max\{le_{i, j}, le_{i - 1, j}\}, ri_{i, j} = \min\{ri_{i, j}, ri_{i - 1, j}\}\)。

为什么左边界取 \(\max\),右边界取 \(\min\) 呢?这不是求最近的边界吗?

其实这很好理解,首先我们画个图(丑陋预警(

拿这玩意儿画网格图我是什么个天才(悲

点 F 是我们当前所在的点,,我们假设 F 在第 \(i\) 行 \(j\) 列。EF 是 F 的悬线。CD 代表 EF 目前往左移动更新的极远处,GH 代表 EF 目前往右移动更新的极远处,AB 代表 \(i - 1\) 行 \(j\) 列的悬线往左的极远处,IJ 代表往右的极远处。

显然,我们的 CD 应该被更新成 AB,GH 应该被更新成 IJ。原因很简单,以 AB 为例,AB 已经被更新过了,是极左的,那么它为什么没有更新到 CD 那一行呢,因为 CD 与 AB 之间出现了不合法的,那么我们就不能更新到 AB,得更新到 CD。GH 与 IJ 的更新同理。

那么问题又来了,这能保证是极远处吗?显然可以。证明和上面差不多,不写了。

还有一个问题,我发现基本上所有的文章都没有提到,只是在代码里面写了怎么可以这样(恼,还有一个问题,还是上面那张图

图逐渐走向艺术派

我们会发现我们的方程没有考虑这里的红色部分是否合法。所以我们要在之前提前处理。如果可以 \(a_{i, j} \not = a_{i, j - 1}\),则 \(le_{i, j} = le_{i, j - 1}\)(这里 \(j\) 正序枚举)。如果 \(a_{i, j} \not = a_{i, j + 1}\) 则 \(ri_{i, j} = ri_{i, j + 1}\)(这里 \(j\) 倒序枚举)

这个应该很好理解因为我语文不好其实是懒我就不多解释了 qwq

代码:

//SIXIANG
#include <iostream>
#define MAXN 2000
#define QWQ cout << "QWQ" << endl;
using namespace std;
int a[MAXN + 10][MAXN + 10], up[MAXN + 10][MAXN + 10], le[MAXN + 10][MAXN + 10], ri[MAXN + 10][MAXN + 10];
int main() {
int n, m;
cin >> n >> m;
for(int p = 1; p <= n; p++)
for(int i = 1; i <= m; i++) {
cin >> a[p][i];
up[p][i] = 1;
le[p][i] = ri[p][i] = i;
} for(int p = 1; p <= n; p++)
for(int i = 2; i <= m; i++)
if(a[p][i] != a[p][i - 1])
le[p][i] = le[p][i - 1]; for(int p = 1; p <= n; p++)
for(int i = m - 1; i >= 1; i--)
if(a[p][i] != a[p][i + 1])
ri[p][i] = ri[p][i + 1]; int ans1 = 0, ans2 = 0;
for(int p = 1; p <= n; p++) {
for(int i = 1; i <= m; i++) {
if(p > 1 && a[p][i] != a[p - 1][i]) {
up[p][i] = up[p - 1][i] + 1;
le[p][i] = max(le[p][i], le[p - 1][i]);
ri[p][i] = min(ri[p][i], ri[p - 1][i]);
}
int a = up[p][i], b = ri[p][i] - le[p][i] + 1;
int c = min(a, b);
ans1 = max(ans1, c * c);
ans2 = max(ans2, a * b);
}
}
cout << ans1 << ' ' << ans2 << endl;
}

其它题目就可以用类似的板子套上去(所以我就理直气壮的不写啦(

题解 [ZJOI2007]棋盘制作的更多相关文章

  1. [洛谷P1169][题解][ZJOI2007]棋盘制作

    我不是题目的说 这道题运用了一种很巧妙的DP方式:悬线法 如图,蓝色为悬线,黄色为向两边延伸的长度 那么显然,最大子矩形的宽一定是这些黄线中最小的(证明从略) 所以我们可以维护三个数组: Up[i][ ...

  2. 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作

    题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...

  3. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

  4. 洛谷 P1169 [ZJOI2007]棋盘制作

    2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...

  5. BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)

    1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec  Memory Limit: 162 MB Submit: 1848  Solved: 936 [Submit][Sta ...

  6. bzoj 1057: [ZJOI2007]棋盘制作 单调栈

    题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 1019[Submit] ...

  7. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  8. P1169 [ZJOI2007]棋盘制作 && 悬线法

    P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...

  9. [luogu P1169] [ZJOI2007]棋盘制作

    [luogu P1169] [ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的 ...

  10. 1057: [ZJOI2007]棋盘制作

    1057: [ZJOI2007]棋盘制作 https://www.lydsy.com/JudgeOnline/problem.php?id=1057 分析: 首先对于(i+j)&1的位置0-& ...

随机推荐

  1. TKE 超级节点,Serverless 落地的最佳形态

    陈冰心,腾讯云产品经理,负责超级节点迭代与客户拓展,专注于 TKE Serverless 产品演进. 背景 让人又爱又恨的 Serverless Serverless 炙手可热,被称为云原生未来发展的 ...

  2. mysql-DuplicateUpdate和java的threadpool的"死锁"

    大家千万不要被文章的标题给迷惑了,他两在本篇文章是没有关系的, 今天给大家讲讲最近2个有意思的issue,分享一下我学到的 mysql DuplicateUpdate的用法要注意的点 java的thr ...

  3. Blazor 部署 pdf.js 不能正确显示中文资源解决办法

    在Blazor项目嵌入 pdf.js 时不能正确显示中文,浏览器F12显示如下错误 错误 l10n.js /web/locale/locale.properties not found. 我找到了解决 ...

  4. http转成https工具类

    工具类代码如下: 点击查看代码 package com.astronaut.auction.modules.oss.utils; import org.apache.commons.collectio ...

  5. uniapp input框聚焦时软键盘弹起整个页面上滑,固定页面不让上滑问题

    根据需求,软键盘弹起时,不允许页面整体向上滑动 用到的属性是:  :adjust-position="false" uni-app 软键盘顶起底部fixed定位的输入框 页面就不会 ...

  6. uniapp中请求接口问题

    在main.js文件中配置: //Vue.prototype.$baseUrl="http://192.168.1.164/api" //线下接口 Vue.prototype.$b ...

  7. 【机器学习】李宏毅——Explainable ML(可解释性的机器学习)

    在前面的学习之中,我们已经学习了很多的模型,它能够针对特定的任务,接受我们的输入并产生目标的输出.但我们并不满足于此,我们甚至希望机器告诉我们,它是如何得到这个答案的,而这就是可解释的机器学习. Wh ...

  8. [深度学习] 基于切片辅助超推理库SAHI优化小目标识别

    对象检测是迄今为止计算机视觉中最重要的应用领域.然而,小物体的检测和大图像的推理仍然是实际使用中的主要问题,这是因为小目标物体有效特征少,覆盖范围少.小目标物体的定义通常有两种方式.一种是绝对尺度定义 ...

  9. cmd/批处理常用命令

    启动新窗口执行命令 ::执行完毕以后,新开的窗口不会自动关闭 start cmd /k echo 123 ::执行完毕以后,新开的窗口会自动关闭 start cmd /C "echo 123 ...

  10. 根号分治简单笔记 | P3396 哈希冲突

    简要题意 你需要维护一个长度为 \(n\) 的序列 \(v\),支持: A x y 求整个序列中,所有模 \(x\) 为 \(y\) 的下标的元素的值,即: \[\sum_{i=0}^{\lfloor ...