\(O(nlog_n)\)求最长上升子序列LIS

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。下面一步一步试着找出它。

我们定义一个序列B,然后从一开始逐个考察这个序列。

此外,我们用一个变量Len来记录现在最长算到多少了

首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

于是我们知道了LIS的长度为5。

注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。

然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了\(O(NlogN)\)

code

#include<bits/stdc++.h>
using namespace std;
const int N = 50005;
int len , n , a[N] , lis[N];
int binary(int x , int l , int r) {
if(l == r) {
if(lis[l] > x)
return l;
else
return -1;
}
int mid = l + r >> 1;
if(x > lis[mid])
return binary(x , mid + 1 , r);
if(x <= a[mid]) {
int ans = binary(x , l , mid);
if(ans == -1)
return mid;
else
return ans;
}
}
int main() {
scanf("%d" , &n);
for (int i = 1 ; i <= n ; i++) {
scanf("%d" , &a[i]);
lis[i] = INT_MAX;
}
for(int i = 1 ; i <= n ; i++) {
if(lis[len] < a[i]) {
lis[++len] = a[i];
continue;
}
lis[binary(a[i] , 1 , len)] = a[i];
}
printf("%d" , len);
return 0;
}

o(nlogn)求最长上升子序列的更多相关文章

  1. nlogn 求最长上升子序列 LIS

    最近在做单调队列,发现了最长上升子序列O(nlogn)的求法也有利用单调队列的思想. 最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]& ...

  2. HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...

  3. [algorithm]求最长公共子序列问题

    最直白方法:时间复杂度是O(n3), 空间复杂度是常数 reference:http://blog.csdn.net/monkeyandy/article/details/7957263 /** ** ...

  4. C++ 求最长递增子序列(动态规划)

    i 0 1 2 3 4 5 6 7 8 a[i] 1 4 7 2 5 8 3 6 9 lis[i] 1 2 3 2 3 4 3 4 5 时间复杂度为n^2的算法: //求最长递增子序列 //2019/ ...

  5. HDU 4681 string 求最长公共子序列的简单DP+暴力枚举

    先预处理,用求最长公共子序列的DP顺着处理一遍,再逆着处理一遍. 再预处理串a和b中包含串c的子序列,当然,为了使这子序列尽可能短,会以c 串的第一个字符开始 ,c 串的最后一个字符结束 将这些起始位 ...

  6. HDU - 1087 Super Jumping!Jumping!Jumping!(dp求最长上升子序列的和)

    传送门:HDU_1087 题意:现在要玩一个跳棋类游戏,有棋盘和棋子.从棋子st开始,跳到棋子en结束.跳动棋子的规则是下一个落脚的棋子的号码必须要大于当前棋子的号码.st的号是所有棋子中最小的,en ...

  7. HDU 1243 反恐训练营 (动态规划求最长公共子序列)

    反恐训练营 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  8. Java实现 LeetCode 583 两个字符串的删除操作(求最长公共子序列问题)

    583. 两个字符串的删除操作 给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符. 示例: 输入: " ...

  9. HDU 1025 Constructing Roads In JGShining's Kingdom[动态规划/nlogn求最长非递减子序列]

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  10. P1020 导弹拦截(nlogn求最长不下降子序列)

    题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...

随机推荐

  1. mongoose Schema字段的含义

    var schema3 = new Schema({ test: { type: String, lowercase: true, // 总是将test的值转化为小写 uppercase: true, ...

  2. python 猜数字

    方法一 import randomif __name__ == '__main__':    yourname = input("你好! 你的名字是什么?\n");    prin ...

  3. springboot修改事务隔离级别

    [SpringBoot]事务的隔离级别.Spring的事务传播机制_51CTO博客_springboot事务隔离级别

  4. Cross Site Scripting DOM (XSS) 攻击jQuery append() 的处理方法

    做安全红线使用Fortify工具进行扫描时,jquery append会报Cross Site Scripting DOM风险.解决该问题有两种办法. 一.原生dom方式 使用JavaScript原生 ...

  5. Asp.Net Core 网站使用TinyMCE实现上传图片

    1.下载TinyMCE https://www.tiny.cloud/get-tiny/self-hosted/ 解压缩后放在网站wwwroot目录 2.下载中文语言包 https://www.tin ...

  6. 测试环境docker化实践

    测试环境对于任何一个软件公司来讲,都是核心基础组件之一.测试环境伴随着发展也从单一的几套环境发展成现在的任意的docker动态环境+docker稳定环境环境体系.期间环境系统不断的演进,去适应集群扩张 ...

  7. Javaweb学习笔记第十四弹---对于Cookie和Filter的学习

    Apache Tomcat - Tomcat Native Downloads 会话追踪技术 会话:打开浏览器,建立连接,直到一方断开连接,会话才会结束:在一次会议中,可以有多次请求. 会话追踪:在多 ...

  8. DSC:数仓SQL脚本迁移的神奇工具

    摘要:本文介绍的DSC工具是针对数据库切换时面临的迁移任务而开发的免安装命令行工具.目的是提供简单.快速.可靠的SQL脚本迁移服务. 本文分享自华为云社区<GaussDB(DWS)DSC工具系列 ...

  9. Java面试——开源框架知识

    一.简单讲讲 Tomcat结构,以及其类加载器流程,线程模型等 [1]模块组成结构:Tomcat 的核心组件就 Connector 和 Container,一个Connector+一个Containe ...

  10. Kafka 管理【主题、分区、消费者组】

    更多内容,前往 IT-BLOG 主题操作 使用 kafka-topics.sh 工具可以执行主题的大部分操作.可以用它创建.修改.删除和查看集群里的主题.要使用该工具的全部功能,需要通过 --zook ...