LogisticRegression(逻辑回归)

逻辑回归虽然名称上带回归,但实际上它属于监督学习中的分类算法。

1.算法基础

LogisticRegression基本架构源自于Adline算法,只是在激励函数的选择上有所不同,Adline算法使用恒等函数作为激励函数,而Logistic选用sigmoid函数作为激励函数。

LogisticRegression算法的数学基础是两个函数:1)logit函数,2)极大似然函数;通过这两个函数构建了LR算法的基本框架。

1.1 logit函数

在概率问题中,有个比较重要的指标,机率比 :

$\frac{p}{1-p}\\$

p代表二分类问题中正事件发生的概率。

在机率比的基础上延申出logit函数:

$logit(p) = log(\frac{p}{1-p})\\$

这里可以看出,p作为正事件发生的概率,取值范围为[0,1],logit(p)的取值范围是负无穷到正无穷。

将logit(p)与净输入值z关联,p作为数据数据正的概率,那么便有如下过程。

$logit(p) = z\\$

$log(\frac{p}{1-p})=z\\$

$\frac{p}{1-p} = e^{z}\\$

$\therefore p = \frac{1}{1+e^{-z}}\\$

$\frac{1}{1+e^{-z}}$被称为sigmod函数,这也就是为什么LR算法中采用sigmod函数作为激励函数的原因。

1.2极大似然函数

极大似然是概率论中估计值的一种,用于数据相互独立情况下最大概率出现的情况:

$L(w) = p(y|x;w) = \prod_{i=1}^{n}p(y^{(i)}|x^{(i)};w)\\$

$= \prod_{i=1}^{n}(\phi(z^{(i)}))^{y^{(i)}}(1-\phi(z^{(i)}))^{(1-y^{(i)})}\\$

对极大似然函数做对数处理会得到下面的公式:

$l(w) = \sum_{i=1}^{n} log(\phi(z^{(i)}))+(1-y^{(i)})log(1-\phi(z^{(i)}))\\$

将这个l(w)取负数得到的就是LR算法的损失函数。

2.算法框架

2.1净输入函数

$z = w_{0}x_{0} + w_{1}x_{1} + ··· +w_{n}x_{n}={\sum_{j=0}^{n}}w_{j}x_{j}=w^{T}x\\$

其中x0的值为1,用来和函数的偏移量相乘;在实际程序中可以使用两种方式实现净输入函数:

1)在训练数据X中添加值全部为1的列,作为偏移量的乘子;

2)将参数W中的偏移量w0单独提出来另算

用python实现,这里使用第二种方式

#净输入函数
def net_input(x,w):
return np.dot(x,w[1:]) + w[0]

2.2激励函数

Logistic Regression与Adline算法的区别在于激励函数,Adline算法的激励函数是恒等函数,Logistic函数的激励函数时sigmoid函数。

$\phi (z) = \frac{1}{1+e^{-z}}\\$

2.3量化器

$ y=\left\{\begin{matrix}
1,\phi(z)\geq 0.5\\ 
-1,\phi(z)< 0.5
\end{matrix}\right. $

使用python实现量化器:

#量化器
def quantization(z):
return np.where(z >= 0.5,1,-1)

3.损失函数

Logistic Regression算法的损失函数是由最大似然函数推导出来的,代价函数J的公式如下:

$J(w) = \sum_{i}^{n} -log(\phi(z^{(i)}))-(1-y^{(i)})log(1-\phi(z^{(i)})\\$

推导过程如下:

根据1.2节中的内容可知,最大似然函数为:

$L(w) = p(y|x;w) = \prod_{i=1}^{n}p(y^{(i)}|x^{(i)};w) = \prod_{i=1}^{n}(\phi(z^{(i)}))^{y^{(i)}}(1-\phi(z^{(i)}))^{(1-y^{(i)})}\\$

通过对极大似然函数做对数处理,得到

$l(w) = \sum_{i=1}^{n} log(\phi(z^{(i)}))+(1-y^{(i)})log(1-\phi(z^{(i)}))\\$

将极大似然函数对数取负,即是LogsticRegression的损失函数。

而我们的目标函数即最小化这个损失函数,即:

$min(l(w))\\$

4.优化算法

LR中的优化算法采用的是梯度下降法

$w:=w+\Delta w\\$

$\Delta w_{j} = -\eta \frac{\partial J}{\partial w_{j}} = \eta \sum_{i=1}^{n}(y^{(i)}-\phi(z^{(i)}))x_{j}^{(i)}\\$

5.正则化解决过拟合的问题

5.1正则化

过拟合是指一种现象:在训练集上表现良好,但在测试集上却性能不佳;一般导致过拟合的原因是因为算法过度拟合训练集上的数据,导致失去了泛化特性。

正则化是解决特征之间共线性(特征相关度高)的一个很有效的技术手段,它可以过滤掉数据中的噪声,最终防止过拟合。

最常用的正则化形式为L2正则化,可以写作:

$\frac{\lambda }{2}\sum_{j=1}^{m}w_{j}^{2}\\$

5.2正则化使用

一般是在代价函数中加上正则化函数,例如LogisticRegression算法中加入正则化后的代价函数为:

$J(w) = [\sum_{i}^{n} -log(\phi(z^{(i)}))-(1-y^{(i)})log(1-\phi(z^{(i)})]+\frac{\lambda }{2}\sum_{j=1}^{m}w_{j}^{2}$

在scikit-learn库中的LogisticRegression类的参数中,有个参数C,这个C表示的是正则化系数的倒数,即:

$C=\frac{1}{\lambda }$

6.使用scikit-learn库中的LogisticRegression类实现鸢尾花进行分类

源代码地址如下:

github地址

Python机器学习/LogisticRegression(逻辑回归模型)(附源码)的更多相关文章

  1. Python机器学习经典实例电子版和附带源码

    Python机器学习经典实例电子版和附带源码 下载:https://pan.baidu.com/s/1m6ODNJk--PWHW8Vdsdjs-g 提取码:nyc0 分享更多python数据分析相关电 ...

  2. Python机器学习算法 — 逻辑回归(Logistic Regression)

    逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型 ...

  3. Python:游戏:扫雷(附源码)

    这次我们基于 pygame 来做一个扫雷,上次有园友问我代码的 python 版本,我说明一下,我所有的代码都是基于 python 3.6 的. 先看截图,仿照 XP 上的扫雷做的,感觉 XP 上的样 ...

  4. Python开发中国象棋实战(附源码)

        Pygame 做的中国象棋,一直以来喜欢下象棋,写了 python 就拿来做一个试试,水平有限,电脑走法水平低,需要在下次版本中更新电脑走法,希望源码能帮助大家更好的学习 python.总共分 ...

  5. Python练手项目实例汇总(附源码下载)

    今天给大家分享几个有趣的Python练手项目实例,希望对Python初学者有帮助哈~ 一.经典的俄罗斯方块   1. 绑定功能 1 # 绑定功能 2 class App(Frame): 3 def _ ...

  6. 福利!Python制作动态字符画(附源码)

    字符画,一种由字母.标点.汉字或其他字符组成的图画.简单的字符画是利用字符的形状代替图画的线条来构成简单的人物.事物等形象,它一般由人工制作而成:复杂的字符画通常利用占用不同数量像素的字符代替图画上不 ...

  7. Java平台调用Python平台已有算法(附源码及解析)

    1. 问题描述 Java平台要调用Pyhon平台已有的算法,为了减少耦合度,采用Pyhon平台提供Restful 接口,Java平台负责来调用,采用Http+Json格式交互. 2. 解决方案 2.1 ...

  8. 基于Python接口自动化测试框架(初级篇)附源码

    引言 很多人都知道,目前市场上很多自动化测试工具,比如:Jmeter,Postman,TestLink等,还有一些自动化测试平台,那为啥还要开发接口自动化测试框架呢?相同之处就不说了,先说一下工具的局 ...

  9. 基于Python接口自动化测试框架+数据与代码分离(进阶篇)附源码

    引言 在上一篇<基于Python接口自动化测试框架(初级篇)附源码>讲过了接口自动化测试框架的搭建,最核心的模块功能就是测试数据库初始化,再来看看之前的框架结构: 可以看出testcase ...

  10. 逻辑回归模型(Logistic Regression)及Python实现

    逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳 ...

随机推荐

  1. 微信小程序授权及检测访问当前页面需要去登录的操作

    1.小程序授权登录 这里我直接复制代码: login.js const app = getApp() Page({ data: { //判断小程序的API,回调,参数,组件等是否在当前版本可用. ca ...

  2. java 动手动脑 方法重载

    如下代码://MethodOverload.java //Using overloaded methods package HJssss; public class zhuce { public st ...

  3. 2022-04-14内部群每日三题-清辉PMP

    1.项目经理资源有限,无法获得更多资源.项目经理应该使用什么技术来充分利用现有资源,而不会令项目完成时间延期? A.资源平滑 B.资源平衡 C.快速跟进 D.赶工 2.正在审查问题日志的项目经理注意到 ...

  4. Access-Control-Allow-Origin php跨域报错

    Access-Control-Allow-Origin php跨域 解决办法: 1.PHP中echo:header(""Access-Control-Allow-Origin: * ...

  5. bigdecimal 比较大小、bigdecimal 数学运算、bigdecimal 精度

    创建 BigDecimal 建议使用 public BigDecimal(String val),使用 number 参数可能会有精度问题 设置精度 setScale(3, BigDecimal.RO ...

  6. ES6的模块化(export导出)

    ES6 Module把一个文件当作一个模块,每个模块有自己的独立作用域,那如何把每个模块联系起来呢?核心点就是模块的导入(import)与导出(export). 模块化的好处: 防止命名冲突 代码复用 ...

  7. 基于Jenkins实现可腹部回滚的cicd平台

    Jenkins :是一个开源的实现持续集成的工具,可以实施监控持续集成过程中所存在的问题,提供详细的日志文件和提醒功能,还能用图表的形式直观的展示出项目构建的趋势和稳定性 maven:只有在Java项 ...

  8. js 处理日期加减

    js 处理日期加减 开始时间设置为6点整,若当前时间小于6:00:00,则使用T-1,否则使用T 结束时间设置为T+1的6点整 Date.prototype.format = function(fmt ...

  9. python菜鸟学习: 3.浅copy使用场景

    # -*- coding: utf-8 -*-import copy# 浅copy# 使用场景,比如A,B夫妻共有一个银行账户,存取马宁的数据username = ["name", ...

  10. shell_Day01

    1.判断/etc/inittab文件是否大于100行,如果大于,则显示"/etc/inittab is a big file."否者显示"/etc/inittab is ...