【SNOI2017 DAY1】炸弹
- 题意:P5024
- 思路:首先\(O(n^2)\)向能炸到的点连边,所以能到达的点的个数就是能到达的点的个数。然后显然要缩点+拓扑排序(我写的记搜)。
然后再写一个线段树优化建图。
然后就WA了,我想了很久才明白我的记搜有问题,一个点可能用来更新另一个点多次。我看了下题解,题解很nice,也很好写,就维护一个联通分量能到的范围[左右端点](此题的性质保证能到的点集是一个子段)。 - 代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e6+5;
const int M=4e7+5;
struct seg {int l,r;}T[N];
struct node {ll p,r;}a[N];
bool cmp(node u,node v) {return u.p<v.p;}
bool In_s[N];
ll sum[N],mod=1e9+7,mp[N],cnt[N],ans[N];
int L[N],R[N],mx[N],mn[N],r[N],o[N],tim,Ecnt,In[N],Bl[N],mark[N],SCC,mxx,lf[N],Time,low[N],dfn[N],st[N],tp,n,nxt[M],to[M],head[N],ecnt;
void add_edge(int u,int v) {nxt[++ecnt]=head[u];to[ecnt]=v;head[u]=ecnt;}
void Build(int x,int l,int r) {
T[x]=(seg){l,r},mxx=max(mxx,x);
if(l==r) {lf[l]=x,mark[x]=l;return;}
int mid=(l+r)>>1,ls=x<<1,rs=x<<1|1;
add_edge(x,ls),add_edge(x,rs);
Build(ls,l,mid),Build(rs,mid+1,r);
}
void Add(int x,int u,int l,int r) {
if(l<=T[x].l&&T[x].r<=r) {add_edge(lf[u],x);return;}
int mid=(T[x].l+T[x].r)>>1;
if(l<=mid)Add(x<<1,u,l,r);
if(r>mid)Add(x<<1|1,u,l,r);
}
void Tarjan(int u) {
dfn[u]=low[u]=++Time,In_s[u]=1;
st[++tp]=u;
for(int i=head[u];i;i=nxt[i]) {
int v=to[i];
if(!dfn[v]) {
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(In_s[v]) low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u]) {
int v;
SCC++;
L[SCC]=1e9;
do {
v=st[tp--],L[SCC]=min(L[SCC],T[v].l),R[SCC]=max(R[SCC],T[v].r),sum[SCC]+=mark[v],Bl[v]=SCC,In_s[v]=0;
}while(u!=v);
}
}
vector<int> G[N];
void dfs(int u) {
if(ans[u]) return;
ans[u]=1;
for(int i=0;i<G[u].size();i++) {
int v=G[u][i];
dfs(v);
L[u]=min(L[v],L[u]),R[u]=max(R[u],R[v]);
}
}
int main() {
scanf("%d",&n);
for(int i=1;i<=n;i++) {
scanf("%lld%lld",&a[i].p,&a[i].r);
}
Build(1,1,n);
sort(a+1,a+1+n,cmp);
for(int i=1;i<=n;i++) mp[i]=a[i].p;
for(int i=1;i<=n;i++) {
int l=lower_bound(mp+1,mp+1+i,a[i].p-a[i].r)-mp;
int r=upper_bound(mp+1+i,mp+1+n,a[i].p+a[i].r)-mp-1;
Add(1,i,l,r);
}
Tarjan(1);
n=mxx;
for(int u=1;u<=n;u++) {
for(int i=head[u];i;i=nxt[i]) {
int v=to[i];
if(Bl[u]!=Bl[v])G[Bl[u]].push_back(Bl[v]),In[Bl[v]]++;
}
}
for(int i=1;i<=SCC;i++) {
if(!ans[i]&&!In[i]) {
dfs(i);
}
}
ll res=0;
for(int i=1;i<=SCC;i++) {
// printf("%d %d\n",L[i],R[i]);
res=(res+1ll*sum[i]%mod*(R[i]-L[i]+1)%mod)%mod;
}
printf("%lld",res);
return 0;
}
【SNOI2017 DAY1】炸弹的更多相关文章
- loj #2255. 「SNOI2017」炸弹
#2255. 「SNOI2017」炸弹 题目描述 在一条直线上有 NNN 个炸弹,每个炸弹的坐标是 XiX_iXi,爆炸半径是 RiR_iRi,当一个炸弹爆炸时,如果另一个炸弹所在位置 X ...
- loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点
loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...
- BSOJ 5603 -- 【SNOI2017】炸弹
题好数据水系列,网上的十几行神仙解法A了原数据. 这道题要用到线段数优化建图的知识.然而考试考到这道题时我还不会. 我们设分别表示每个炸弹向左和向右最远能炸到哪个炸弹.很容易想到一个思路,就是每个炸弹 ...
- 【SNOI2017】炸弹
题目大意 在一条直线上有\(N\)个炸弹,每个炸弹的坐标是\(X_i\),爆炸半径是 \(R_i\), 当一个炸弹爆炸时,如果另一个炸弹所在位置\(X_j\)满足: $ X_i-R_i\leq X_j ...
- LOJ2255. 「SNOI2017」炸弹 (线段树)
本文为线段树做法 (听说可以tarjan缩点+拓扑? 感觉差不多..而且这样看起来方便很多 找到左端点的过程可以看作 点 -> 区间内lowerbound最小的点 -> lowerboun ...
- 2.26NK周赛
这场打的很烂,说明我对组合数学的掌握(二项式定理,以及递推式的思考方向)都不太好.而且,我做题的思路也很有问题.就是完全凭借灵感,自己没有脑子一样思路就被题目带跑了,根本跳不出来,看到题目也不会分析, ...
- [bzoj5017][Snoi2017]炸弹 tarjan缩点+线段树优化建图+拓扑
5017: [Snoi2017]炸弹 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 608 Solved: 190[Submit][Status][ ...
- [LOJ#2255][BZOJ5017][Snoi2017]炸弹
[LOJ#2255][BZOJ5017][Snoi2017]炸弹 试题描述 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足: ...
- BZOJ5017题解SNOI2017炸弹--玄学递推
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=5017 分析 老师讲课谈到了这道题,课上想出了个连边建图然后乱搞的操作,被老师钦定的递推方 ...
随机推荐
- java中如何知道一个字符串中有多少个字,把每个字打印出来,举例
9.6 About string,"I am ateacher",这个字符串中有多少个字,且分别把每个字打印出来. public class Test { static i ...
- Python程序的流程
1 """ 2 python程序的流程 3 """ 4 # ------------- 分支结构---------------- 5 # i ...
- C语言-操作符与表达式
C语言入门之操作符与表达式 前言 本篇文章主要包括各种操作符的介绍与表达式求值,欢迎各位小伙伴与我一起学习. 一.操作符 分类 算术操作符 移位操作符 位操作符 赋值操作符 单目运算符 关系操作符 逻 ...
- MySQL---char和varchar的区别
char和varchar的区别 char表示定长, 即长度固定. varchar表示变长, 即长度可变. 当输入数据的长度小于定义的长度时, char会用空格填充, 而varchar则按照实际长度存储 ...
- Python 连接Mysql数据库执行语句操作
学习Mysql模块的使用,模块命名的坑,解决SHA加密错误无法连接
- spring boot整合mybaties项目
1.第一步配置pom.xml 2.第二步 将我们所需要的ssm配置文件复制粘贴到src/main/resources下面: 3.将ssm中所需要的layui和jsp页面放到webapp下面 4.修改复 ...
- Hyperledger Fabric无排序组织以Raft协议启动多个Orderer服务、TLS组织运行维护Orderer服务
前言 在实验Hyperledger Fabric无排序组织以Raft协议启动多个Orderer服务.多组织共同运行维护Orderer服务中,我们已经完成了让普通组织运行维护 Orderer 服务,但是 ...
- 原生实现C#和Lua相互调用-Unity3D可用
引言 本篇简单介绍如何在C#中执行Lua脚本,传递数据到Lua中使用,以及Lua中调用C#导出的方法等.在Unity中开发测试,并打IL2CPP的Android包在模拟器上运行通过.Lua版本 ...
- 如何在代码层面提供CPU分支预测效率
关于分支预测的基本概念和详细算法可以参考我之前写的知乎回答,基本概念不再阐述了~~ https://www.zhihu.com/question/486239354/answer/2410692045 ...
- 【dvwa攻略】安全等级low——爆破
首先登录dvwa,进入到爆破功能模块,在这里是有可以输入账号密码的框的 打开burpsuite,抓包以后发现是get方法 通过在这里输入账号.密码 username password 然后再通过get ...