【Linux】多进程与多线程之间的区别

http://blog.csdn.net/byrsongqq/article/details/6339240

网络编程中设计并发服务器,使用多进程与多线程 ,请问有什么区别?  答案一: 1,进程:子进程是父进程的复制品。子进程获得父进程数据空间、堆和栈的复制品。 2,线程:相对与进程而言,线程是一个更加接近与执行体的概念,它可以与同进程的其他线程共享数据,但拥有自己的栈空间,拥有独立的执行序列。 两者都可以提高程序的并发度,提高程序运行效率和响应时间。 线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源管理和保护;而进程正相反。同时,线程适合于在SMP机器上运行,而进程则可以跨机器迁移。
答案二: 根本区别就一点:用多进程每个进程有自己的地址空间(address space),线程则共享地址空间。所有其它区别都是由此而来的: 1。速度:线程产生的速度快,线程间的通讯快、切换快等,因为他们在同一个地址空间内。 2。资源利用率:线程的资源利用率比较好也是因为他们在同一个地址空间内。 3。同步问题:线程使用公共变量/内存时需要使用同步机制还是因为他们在同一个地址空间内

多线程和多进程的区别(小结) 收藏

很想写点关于多进程和多线程的东西,我确实很爱他们。但是每每想动手写点关于他们的东西,却总是求全心理作祟,始终动不了手。

今天终于下了决心,写点东西,以后可以再修修补补也无妨。

一 . 为何需要多进程(或者多线程),为何需要并发?

这个问题或许本身都不是个问题。但是对于没有接触过多进程编程的朋友来说,他们确实无法感受到并发的魅力以及必要性。

我想,只要你不是整天都写那种 int main() 到 底的代码的人,那么或多或少你会遇到代码响应不够用的情况,也应该有尝过并发编程的甜头。就像一个快餐点的服务员,既要在前台接待客户点餐,又要接电话送 外卖,没有分身术肯定会忙得你焦头烂额的。幸运的是确实有这么一种技术,让你可以像孙悟空一样分身,灵魂出窍,乐哉乐哉地轻松应付一切状况 , 这就是多进程 / 线程技术。

并发技术,就是可以让你在同一时间同时执行多条任务的技术。你的代码将不仅仅是从上到下,从左到右这样规规矩矩的一条线执行。你可以一条线在 main 函数里跟你的客户交流,另一条线,你早就把你外卖送到了其他客户的手里。

所以,为何需要并发?因为我们需要更强大的功能,提供更多的服务,所以并发,必不可少。

二 . 多进程

什么是进程。最直观的就是一个个 pid, 官方的说法就:进程是程序在计算机上的一次执行活动。

说得简单点,下面这段代码执行的时候

  1. int  main()
  2. {
  3. printf(”pid is %d/n”,getpid() );
  4. return  0;
  5. }

进入 main 函数,这就是一个进程,进程 pid 会打印出来,然后运行到 return ,该函数就退出,然后由于该函数是该进程的唯一的一次执行,所以 return 后,该进程也会退出。

看看多进程。 linux 下创建子进程的调用是 fork();

  1. #include <unistd.h>
  2. #include <sys/types.h>
  3. #include <stdio.h>
  4. void  print_exit()
  5. {
  6. printf("the exit pid:%d/n" ,getpid() );
  7. }
  8. main ()
  9. {
  10. pid_t pid;
  11. atexit( print_exit );      //注册该进程退出时的回调函数
  12. pid=fork();
  13. if  (pid < 0)
  14. printf("error in fork!" );
  15. else  if  (pid == 0)
  16. printf("i am the child process, my process id is %d/n" ,getpid());
  17. else
  18. {
  19. printf("i am the parent process, my process id is %d/n" ,getpid());
  20. sleep(2);
  21. wait();
  22. }
  23. }

i am the child process, my process id is 15806 the exit pid:15806 i am the parent process, my process id is 15805 the exit pid:15805

这是 gcc 测试下的运行结果。

关于 fork 函数,功能就是产生子进程,由于前面说过,进程就是执行的流程活动。

那么 fork 产生子进程的表现就是它会返回 2 次 ,一次返回 0 ,顺序执行下面的代码。这是子进程。

一次返回子进程的 pid ,也顺序执行下面的代码,这是父进程。

(为何父进程需要获取子进程的 pid 呢?这个有很多原因,其中一个原因:看最后的 wait ,就知道父进程等待子进程的终结后,处理其 task_struct 结构,否则会产生僵尸进程 , 扯远了,有兴趣可以自己 google )。

如果 fork 失败,会返回 -1.

额外说下 atexit( print_exit ); 需要的参数肯定是函数的调用地址。

这里的 print_exit 是函数名还是函数指针呢?答案是函数指针,函数名永远都只是一串无用的字符串。

某本书上的规则:函数名在用于非函数调用的时候,都等效于函数指针。

说到子进程只是一个额外的流程,那他跟父进程的联系和区别是什么呢?

我很想建议你看看 linux 内核的注解(有兴趣可以看看,那里才有本质上的了解),总之 ,fork 后,子进程会复制父进程的task_struct 结构,并为子进程的堆栈分配物理页。理论上来说,子进程应该完整地复制父进程的堆,栈以及数据空间,但是 2 者共享正文段。

关于写时复制:由于一般 fork 后面都接着 exec ,所以,现在的 fork 都在用写时复制的技术,顾名思意,就是,数据段,堆,栈,一开始并不复制,由父,子进程共享,并将这些内存设置为只读。直到父,子进程一方尝试写这些区域,则内核才为需要修改的那片内存拷贝副本。这样做可以提高 fork 的效率。

三 . 多线程

线程是可执行代码的可分派单元。这个名称来源于 “ 执行的线索 ” 的概念。在基于线程的多任务的环境中,所有进程有至少一个线程,但是它们可以具有多个任务。这意味着单个程序可以并发执行两个或者多个任务。

简 而言之,线程就是把一个进程分为很多片,每一片都可以是一个独立的流程。这已经明显不同于多进程了,进程是一个拷贝的流程,而线程只是把一条河流截成很多 条小溪。它没有拷贝这些额外的开销,但是仅仅是现存的一条河流,就被多线程技术几乎无开销地转成很多条小流程,它的伟大就在于它少之又少的系统开销。(当 然伟大的后面又引发了重入性等种种问题,这个后面慢慢比较)。

还是先看 linux 提供的多线程的系统调用:

int pthread_create(pthread_t *restrict tidp,                    const pthread_attr_t *restrict attr,                    void *(*start_rtn)(void),                     void *restrict arg);

Returns: 0 if OK, error number on failure

第一个参数为指向线程标识符的指针。  第二个参数用来设置线程属性。  第三个参数是线程运行函数的起始地址。  最后一个参数是运行函数的参数。

  1. #include<stdio.h>
  2. #include<string.h>
  3. #include<stdlib.h>
  4. #include<unistd.h>
  5. #include<pthread.h>
  6. void * task1(void *);
  7. void * task2(void *);
  8. void  usr();
  9. int  p1,p2;
  10. int  main()
  11. {
  12. usr();
  13. getchar();
  14. return  1;
  15. }
  16. void  usr()
  17. {
  18. pthread_t pid1, pid2;
  19. pthread_attr_t attr;
  20. void  *p;
  21. int  ret=0;
  22. pthread_attr_init(&attr);         //初始化线程属性结构
  23. pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);   //设置attr结构为分离
  24. pthread_create(&pid1, &attr, task1, NULL);         //创建线程,返回线程号给pid1,线程属性设置为attr的属性,线程函数入口为task1,参数为NULL
  25. pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
  26. pthread_create(&pid2, &attr, task2, NULL);
  27. //前台工作
  28. ret=pthread_join(pid2, &p);         //等待pid2返回,返回值赋给p
  29. printf("after pthread2:ret=%d,p=%d/n" , ret,(int )p);
  30. }
  31. void * task1(void  *arg1)
  32. {
  33. printf("task1/n" );
  34. //艰苦而无法预料的工作,设置为分离线程,任其自生自灭
  35. pthread_exit( (void  *)1);
  36. }
  37. void * task2(void  *arg2)
  38. {
  39. int  i=0;
  40. printf("thread2 begin./n" );
  41. //继续送外卖的工作
  42. pthread_exit((void  *)2);
  43. }

这个多线程的例子应该很明了了,主线程做自己的事情,生成 2 个子线程, task1 为分离,任其自生自灭,而 task2 还是继续送外卖,需要等待返回。(因该还记得前面说过僵尸进程吧,线程也是需要等待的。如果不想等待,就设置线程为分离线程)

额外的说下,linux下要编译使用线程的代码,一定要记得调用pthread库。如下编译:

gcc -o pthrea -pthread  pthrea.c

四.比较以及注意事项

1.看完前面,应该对多进程和多线程有个直观的认识。如果总结多进程和多线程的区别,你肯定能说,前者开销大,后者开销较小。确实,这就是最基本的区别。

2.线程函数的可重入性:

说到函数的可重入,和线程安全,我偷懒了,引用网上的一些总结。

线程安全:概念比较直观。一般说来,一个函数被称为线程安全的,当且仅当被多个并发线程反复调用时,它会一直产生正确的结果。

可重入:概念基本没有比较正式的完整解释,但是它比线程安全要求更严格。根据经验,所谓“重入”,常见的情况是,程序执行到某个函数foo() 时,收到信号,于是暂停目前正在执行的函数,转到信号处理函数,而这个信号处理函数的执行过程中,又恰恰也会进入到刚刚执行的函数 foo() ,这样便发生了所谓的重入。此时如果foo() 能够正确的运行,而且处理完成后,之前暂停的 foo() 也能够正确运行,则说明它是可重入的。

线程安全的条件:

要 确保函数线程安全,主要需要考虑的是线程之间的共享变量。属于同一进程的不同线程会共享进程内存空间中的全局区和堆,而私有的线程空间则主要包括栈和寄存 器。因此,对于同一进程的不同线程来说,每个线程的局部变量都是私有的,而全局变量、局部静态变量、分配于堆的变量都是共享的。在对这些共享变量进行访问 时,如果要保证线程安全,则必须通过加锁的方式。

可重入的判断条件:

要确保函数可重入,需满足一下几个条件:

1 、不在函数内部使用静态或全局数据  2 、不返回静态或全局数据,所有数据都由函数的调用者提供。  3 、使用本地数据,或者通过制作全局数据的本地拷贝来保护全局数据。  4 、不调用不可重入函数。

可重入与线程安全并不等同,一般说来,可重入的函数一定是线程安全的,但反过来不一定成立。它们的关系可用下图来表示:

比如: strtok 函数是既不可重入的,也不是线程安全的;加锁的 strtok 不是可重入的,但线程安全;而 strtok_r既是可重入的,也是线程安全的。

如果我们的线程函数不是线程安全的,那在多线程调用的情况下,可能导致的后果是显而易见的——共享变量的值由于不同线程的访问,可能发生不可预料的变化,进而导致程序的错误,甚至崩溃。

3.关于IPC(进程间通信)

由于多进程要并发协调工作,进程间的同步,通信是在所难免的。

稍微列举一下linux常见的IPC.

linux下进程间通信的几种主要手段简介:

  1. 管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;
  2. 信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本 身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于 BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数);
  3. 报文(Message)队列(消息队列):消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字 节流以及缓冲区大小受限等缺点。
  4. 共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
  5. 信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。
  6. 套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。

或许你会有疑问,那多线程间要通信,应该怎么做?前面已经说了,多数的多线程都是在同一个进程下的,它们共享该进程的全局变量,我们可以通过全局变量来实现线程间通信。如果是不同的进程下的2个线程间通信,直接参考进程间通信。

4.关于线程的堆栈

说一下线程自己的堆栈问题。

是的,生成子线程后,它会获取一部分该进程的堆栈空间,作为其名义上的独立的私有空间。(为何是名义上的呢?)由于,这些线程属于同一个进程,其他 线程只要获取了你私有堆栈上某些数据的指针,其他线程便可以自由访问你的名义上的私有空间上的数据变量。(注:而多进程是不可以的,因为不同的进程,相同 的虚拟地址,基本不可能映射到相同的物理地址)

5.在子线程里fork

看过好几次有人问,在子线程函数里调用system或者 fork为何出错,或者fork产生的子进程是完全复制父进程的吗?

我测试过,只要你的线程函数满足前面的要求,都是正常的。

  1. #include<stdio.h>
  2. #include<string.h>
  3. #include<stdlib.h>
  4. #include<unistd.h>
  5. #include<pthread.h>
  6. void * task1(void  *arg1)
  7. {
  8. printf("task1/n" );
  9. system("ls" );
  10. pthread_exit( (void  *)1);
  11. }
  12. int  main()
  13. {
  14. int  ret=0;
  15. void  *p;
  16. int  p1=0;
  17. pthread_t pid1;
  18. pthread_create(&pid1, NULL, task1, NULL);
  19. ret=pthread_join(pid1, &p);
  20. printf("end main/n" );
  21. return  1;
  22. }

上面这段代码就可以正常得调用ls指令。

不过,在同时调用多进程(子进程里也调用线程函数)和多线程的情况下,函数体内很有可能死锁。

具体的例子可以看看这篇文章。

http://www.cppblog.com/lymons/archive/2008/06/01/51836.aspx

linux 下 多进程与多线程的更多相关文章

  1. linux下多进程的调试

    linux下多进程的调试:  (1)follow-fork-mode           set follow-fork-mode [parent | child] ---- fork之后选择调试父进 ...

  2. linux下C语言多线程编程实例

    用一个实例.来学习linux下C语言多线程编程实例. 代码目的:通过创建两个线程来实现对一个数的递加.代码: //包含的头文件 #include <pthread.h> #include ...

  3. 【Linux】多进程与多线程之间的区别

    http://blog.csdn.net/byrsongqq/article/details/6339240 网络编程中设计并发服务器,使用多进程与多线程 ,请问有什么区别?  答案一: 1,进程:子 ...

  4. linux下C++的多线程编程

    1. 引言 线程(thread)技术早在60年代就被提出,但真正应用多线程到操作系统中去,是在80年代中期,solaris是这方面的佼佼者.传统的Unix也支持线程的概念,但是在一个进程(proces ...

  5. c++ 网络编程(二) linux 下多进程socket通信 多个客户端与单个服务端交互代码实现回声服务器

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9612820.html 锲子-- 预备知识优雅的关闭套接字连接: 基于TCP的半关闭 TCP中的 ...

  6. Linux下多进程服务端客户端模型一(单进程与多进程模型)

    本文将会简单介绍Linux下如何利用C库函数与系统调用编写一个完整的.初级可用的C-S模型. 一.基本模型: 1.1   首先服务器调用socket()函数建立一个套接字,然后bind()端口,开始l ...

  7. Linux下多进程编程之exec函数语法及使用实例

    exec函数族 1)exec函数族说明 fork()函数用于创建一个子进程,该子进程几乎复制了父进程的全部内容,但是,这个新创建的进程如何执行呢?exec函数族就提供了一个在进程中启动另一个程序执行的 ...

  8. Linux下简单的多线程编程--线程池的实现

    /* 写在前面的话: 今天刚“开原”,选择了一篇关于线程池的文件与大家分享,希望能对您学习有所帮助,也希望能与大家共同学习! 选择在这个特殊的时候注册并发文章也是有一些我个人特殊的意义的,看我的id( ...

  9. Linux下多进程服务端客户端模型二(粘包问题与一种解决方法)

    一.Linux发送网络消息的过程 (1) 应用程序调用write()将消息发送到内核中 ( 2)内核中的缓存达到了固定长度数据后,一般是SO_SNDBUF,将发送到TCP协议层 (3)IP层从TCP层 ...

随机推荐

  1. 数据存储之json文件处理和csv文件处理

    什么是json: JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式.它基于 ECMAScript (w3c制定的js规范)的一个子集,采用 ...

  2. git初次建立远程仓库问题

    git "Could not read from remote repository.Please make sure you have the correct access rights. ...

  3. OpenStack之虚机热迁移代码解析

    OpenStack之虚机热迁移代码解析 话说虚机迁移分为冷迁移以及热迁移,所谓热迁移用度娘的话说即是:热迁移(Live Migration,又叫动态迁移.实时迁移),即虚机保存/恢复(Save/Res ...

  4. leetcode 【 Subsets 】python 实现

    题目: Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset mus ...

  5. Ansible实战之Nginx高可用代理LNMP-wordpress

    author:JevonWei 版权声明:原创作品 blog:http://119.23.52.191/ --- 实验环境:前端使用Nginx做代理服务器,静态资源经由缓存服务器,连接后端web集群, ...

  6. Log4j官方文档翻译(三、配置)

    之前的章节介绍了log4j的核心组件,本章将会通过配置文件介绍一下核心组建的配置. 主要在配置文件中配置log4j的日志级别,定义appender.layout等. log4j.properties是 ...

  7. 多线程(实现Runnable接口)

    /** * 创建一个子线程, 完成1-100之间自然数的输出,同样的主线程执行同样的操作 *创建多线程的第二种方式,通过实现的方式 * 继承和实现的方式对比 * 一,联系: *  public cla ...

  8. BZOJ-1038 [ZJOI2008]瞭望塔

    先求半平面交,然后建塔的地方肯定是在半平面交的交点上或者是在地面线段的交点上. #include <cstdlib> #include <cstdio> #include &l ...

  9. BZOJ3999 [TJOI2015]旅游 【树剖 + 线段树】

    题目 为了提高智商,ZJY准备去往一个新世界去旅游.这个世界的城市布局像一棵树.每两座城市之间只有一条路径可 以互达.每座城市都有一种宝石,有一定的价格.ZJY为了赚取最高利益,她会选择从A城市买入再 ...

  10. 浅谈C++三层架构

    浅谈C++三层架构 三层架构并不是MVC,MVC是一个很早就有的经典的程序设计模式,M-V-C分为三层,M(Model)-V(View)-C(Control). web开发中的三层架构是指:数据访问层 ...