bzoj3944

题目描述

输入

一共T+1行
第1行为数据组数T(T<=10)
第2~T+1行每行一个非负整数N,代表一组询问

输出

一共T行,每行两个用空格分隔的数ans1,ans2

样例输入

6
1
2
8
13
30
2333

样例输出

1 1
2 0
22 -2
58 -3
278 -3
1655470 2

bzoj4805

同上,不需要求mu


题解

杜教筛

公式推导:

这里有一个难点(其实也不能算难),就是由枚举d|i到枚举j≤⌊n/i⌋。此时可以看作下面语句的i是上面语句的i/d,而下面语句的j就是上面语句的d。这样枚举的话,不会出现重复或遗漏,不会超过n,并且便于计算。

推出这个式子之后,枚举⌊n/i⌋的取值(最多只有√n种),用记忆化搜索的方法记录每次的sum(⌊n/i⌋),并累计到sum(n)中。这里需要使用map。

这样做的时间复杂度是O(n3/4logn),如果预处理出n2/3以内的phi值,就能使时间复杂度达到更小的O(n2/3logn)。

这样就解决了bzoj4805。对于bzoj3944还需要求莫比乌斯函数的前缀和,方法和欧拉函数非常类似,运用到了∑mu(d)(d|n)=1的性质,只需要把n(n+1)/2换成1即可。

bzoj3944:

#include <cstdio>
#include <map>
#include <utility>
#define N 3000010
using namespace std;
typedef long long ll;
map<ll , pair<ll , ll> > f;
map<ll , pair<ll , ll> >::iterator it;
ll phi[N] , mu[N] , prime[N] , tot , sumphi[N] , summu[N] , m = 3000000;
bool np[N];
void query(ll n , ll &ans1 , ll &ans2)
{
if(n <= m)
{
ans1 = sumphi[n] , ans2 = summu[n];
return;
}
it = f.find(n);
if(it != f.end())
{
ans1 = it->second.first , ans2 = it->second.second;
return;
}
ans1 = n * (n + 1) / 2 , ans2 = 1;
ll i , last , tmp1 , tmp2;
for(i = 2 ; i <= n ; i = last + 1)
{
last = n / (n / i) , query(n / i , tmp1 , tmp2);
ans1 -= (last - i + 1) * tmp1 , ans2 -= (last - i + 1) * tmp2;
}
f[n] = make_pair(ans1 , ans2);
}
int main()
{
int T;
ll n , i , j , ans1 , ans2;
np[1] = 1 , mu[1] = phi[1] = sumphi[1] = summu[1] = 1;
for(i = 2 ; i <= m ; i ++ )
{
if(!np[i]) prime[++tot] = i , phi[i] = i - 1 , mu[i] = -1;
for(j = 1 ; j <= tot && i * prime[j] <= m ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
phi[i * prime[j]] = phi[i] * prime[j] , mu[i * prime[j]] = 0;
break;
}
else phi[i * prime[j]] = phi[i] * (prime[j] - 1) , mu[i * prime[j]] = -mu[i];
}
sumphi[i] = sumphi[i - 1] + phi[i] , summu[i] = summu[i - 1] + mu[i];
}
scanf("%d" , &T);
while(T -- ) scanf("%lld" , &n) , query(n , ans1 , ans2) , printf("%lld %lld\n" , ans1 , ans2);
return 0;
}

bzoj4805:

#include <cstdio>
#include <map>
#define N 1600010
using namespace std;
typedef long long ll;
map<ll , ll> f;
map<ll , ll>::iterator it;
ll m = 1600000 , phi[N] , prime[N] , tot , sum[N];
bool np[N];
ll query(ll n)
{
if(n <= m) return sum[n];
it = f.find(n);
if(it != f.end()) return it->second;
ll ans = n * (n + 1) / 2 , i , last;
for(i = 2 ; i <= n ; i = last + 1) last = n / (n / i) , ans -= (last - i + 1) * query(n / i);
f[n] = ans;
return ans;
}
int main()
{
ll i , j , n;
phi[1] = sum[1] = 1;
for(i = 2 ; i <= m ; i ++ )
{
if(!np[i]) phi[i] = i - 1 , prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= m ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
sum[i] = sum[i - 1] + phi[i];
}
scanf("%lld" , &n);
printf("%lld\n" , query(n));
return 0;
}

【bzoj3944/bzoj4805】Sum/欧拉函数求和 杜教筛的更多相关文章

  1. 【BZOJ3944/4805】Sum/欧拉函数求和 杜教筛

    [BZOJ3944]Sum Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用 ...

  2. BZOJ4805: 欧拉函数求和(杜教筛)

    4805: 欧拉函数求和 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 614  Solved: 342[Submit][Status][Discus ...

  3. BZOJ 4805: 欧拉函数求和 杜教筛

    https://www.lydsy.com/JudgeOnline/problem.php?id=4805 给出一个数字N,求sigma(phi(i)),1<=i<=N https://b ...

  4. LOJ6686 Stupid GCD(数论,欧拉函数,杜教筛)

    做题重心转移到 LOJ 了. 至于为什么,如果你知道“……”的密码,就去看吧. LOJ 上用户自创题大多数都不可做,今天看到个可做题(而且还是个水题),就来做了一发. 明显枚举立方根.(以下令 $m= ...

  5. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  6. 【51nod】1239 欧拉函数之和 杜教筛

    [题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...

  7. 51nod1244 欧拉函数之和 杜教筛

    和上一题差不多,一个是μ*I=e,一个是φ*I=Id 稍改就得到了这题的代码 (我会告诉你我一开始逆元算错了吗) #include <bits/stdc++.h> #define MAX ...

  8. 【BZOJ4805】欧拉函数求和(杜教筛)

    [BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...

  9. 【BZOJ4805】欧拉函数求和

    题面 Description 给出一个数字N,求\(\sum\limits_{i=1}^n\varphi(i)\)i,1<=i<=N Input 正整数N.N<=2*10^9 Out ...

随机推荐

  1. Tarjan在图论中的应用(一)——用Tarjan来实现强连通分量缩点

    前言 \(Tarjan\)是一个著名的将强连通分量缩点的算法. 大致思路 它的大致思路就是在图上每个联通块中任意选一个点开始进行\(Tarjan\)操作(依据:强连通分量中的点可以两两到达,因此从任意 ...

  2. MAC 设置登录欢迎语

    MacdeMacBook-Pro:etc mac$ cd /etc MacdeMacBook-Pro:etc mac$ cat motd 技术沉淀,空杯心态! _______ _______ _ __ ...

  3. python剑指offer剪绳子

    题目 给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1)每段绳子的长度记为k[0],k[1],…,k[m].请问k[0]k[1]…*k[m]可能的最大乘积是多少 ...

  4. CUDA的软件体系

    CUDA的软件堆栈由以下三层构成:CUDA Library.CUDA runtime API.CUDA driver API,如图所示,CUDA的核心是CUDA C语言,它包含对C语言的最小扩展集和一 ...

  5. leetcode - 二叉树最大深度

    二叉树最大深度 给定一个二叉树,找出其最大深度. 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数. 说明: 叶子节点是指没有子节点的节点. 示例: 给定二叉树 [3,9,20,null,nul ...

  6. vue组件-使用插槽分发内容(slot)

    slot--使用插槽分发内容(位置.槽口:作用: 占个位置) 官网API: https://cn.vuejs.org/v2/guide/components.html#使用插槽分发内容 使用组件时,有 ...

  7. swiper动画效果

    参考swiper官方网站:http://www.swiper.com.cn/ Swiper常用于移动端网站的内容触摸滑动: 结构展示:   纯javascript打造的滑动特效插件,面向手机.平板电脑 ...

  8. 高级字符驱动之堵塞与非堵塞IO

    /** *此实例涉及到线程的挂起与竞态,字符IO的堵塞与非堵塞 */ struct scull_pipe { wait_queue_head_t inp, outp; char *buffer, *e ...

  9. 第1章 VMware中安装CentOS7

    目录 1.1 下载CentOS7安装包 1.2 VMware中新建虚拟机 1.3 安装操作系统 本章讲解在VMware中安装CentOS虚拟机的步骤.使用的VMware Workstation版本为1 ...

  10. Python中的tuple

    tuple_lst = [ ('元祖容器可哈希',), ('元祖中的元素不可直接修改',), ('元祖可迭代',), ('查',), ('练习',), ] 元祖容器可哈希 >>>ha ...