过程很美妙啊

Problem Description

Rikka is a high school girl suffering seriously from Chūnibyō (the age of fourteen would either act like a know-it-all adult, or thinks they have special powers no one else has. You might google it for detailed explanation) who, unfortunately, performs badly at math courses. After scoring so poorly on her maths test, she is faced with the situation that her club would be disband if her scores keeps low.
Believe it or not, in the next exam she faces a hard problem described as follows.
Let’s denote f(x) number of ordered pairs satisfying (a * b)|x (that is, x mod (a * b) = 0) where a and b are positive integers. Given a positive integer n, Rikka is required to solve for f(1) + f(2) + . . . + f(n).
According to story development we know that Rikka scores slightly higher than average, meaning she must have solved this problem. So, how does she manage to do so?

Input

There are several test cases.
For each test case, there is a single line containing only one integer n (1 ≤ n ≤ 1011).
Input is terminated by EOF.

Output

For each test case, output one line “Case X: Y” where X is the test case number (starting from 1) and Y is the desired answer.

题目大意

求有序三元组$(a,b,c)$满足$a*b*c=n$的个数

题目分析

考虑以下三种做法:

大力卷积吧!

发现$\sum_{abc=n} \textbf{1}$这是一个卷积的形式,那么卷两次即可。

时间复杂度:$O(n\ln n)$

线性筛

注意到$n$的质因数之间互不影响。那么考虑将$n$分解为$n=p_1^{a_1}\times p_2^{a_2}\times \cdots \times p_k^{a_k}$的形式,于是答案就是${\rm f(n)}={(a_1+1)\times (a_1+2)\over{2}}\times {(a_2+1)\times (a_2+2)\over{2}}\times \cdots \times {(a_k+1)\times (a_k+2)\over{2}}$.

这样子做一遍线性筛就好了。

时间复杂度:$O(n)$

转化一下

注意到这个顺序实际上不是必要的,也就是说完全可以算出无序的答案之后反过来考虑有序,即$abc≤n$的答案数.

那么只需要枚举$a,b$,就可以得到$c$的范围即$[b,{\left \lfloor \frac{n}{ab} \right \rfloor}]$。

此时若$a=b$,如果$c=b$会产生1种方案;$c≠b$有${\left \lfloor \frac{n}{ab} \right \rfloor}-b$种情况、而每一种情况会产生3种方案。这里所谓产生的方案即有序所带来的额外贡献。那么$a≠b$时同理。

时间复杂度:$O(n^{\frac{2}{3}})$

 #include<bits/stdc++.h>
typedef long long ll; ll n,ans;
int scenario; int main()
{
while (scanf("%lld",&n)!=EOF)
{
ans = ;
for (ll i=; i*i*i<=n; i++)
for (ll j=i; i*j*j<=n; j++)
{
ll k = n/(i*j);
if (j > k) break;
if (i==j) ans += (k-j)*3ll+;
else ans += (k-j)*6ll+;
}
printf("Case %d: %lld\n",++scenario,ans);
}
return ;
}

END

【数学 思维题】HDU4473Exam的更多相关文章

  1. PJ考试可能会用到的数学思维题选讲-自学教程-自学笔记

    PJ考试可能会用到的数学思维题选讲 by Pleiades_Antares 是学弟学妹的讲义--然后一部分题目是我弄的一部分来源于洛谷用户@ 普及组的一些数学思维题,所以可能有点菜咯别怪我 OI中的数 ...

  2. 51Nod 1003 阶乘后面0的数量(数学,思维题)

    1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5         难度:1级算法题 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720 ...

  3. Gym 100801D Distribution in Metagonia (数学思维题)

    题目:传送门.(需要下载PDF) 题意:t组数据,每组数据给定一个数ni(1 ≤ ni ≤ 10^18),把ni拆成尽可能多的数,要求每个数的素因子只包含2和3,且这些数不能被彼此整除,输出一共能拆成 ...

  4. BZOJ4377 Kurs szybkiego czytania \ Luogu 3589[POI2015]KUR - 数学思维题

    Solution 我又双叒叕去看题解啦$QAQ$, 真的想不到鸭 输入 $a$ 和 $n$ 互质, 所以满足 $a \times i \ mod \ n$ $(0<=i<n)$ 肯定是不重 ...

  5. BZOJ4377[POI2015]Kurs szybkiego czytania——数学思维题

    题目描述 给定n,a,b,p,其中n,a互质.定义一个长度为n的01串c[0..n-1],其中c[i]==0当且仅当(ai+b) mod n < p.给定一个长为m的小01串,求出小串在大串中出 ...

  6. EOJ2018.10 月赛(B 数学+思维题)

    传送门:Problem B https://www.cnblogs.com/violet-acmer/p/9739115.html 题意: 找到最小的包含子序列a的序列s,并且序列s是 p -莫干山序 ...

  7. EOJ2018.10 月赛(A 数学+思维题)

    传送门:Problem A https://www.cnblogs.com/violet-acmer/p/9739115.html 题意: 能否通过横着排或竖着排将 1x p 的小姐姐填满 n x m ...

  8. zoj 2818 Root of the Problem(数学思维题)

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2818 题目描述: Given positive integer ...

  9. HDU5742 It's All In The Mind 数学思维题

    Problem Description Professor Zhang has a number sequence a1,a2,...,an. However, the sequence is not ...

随机推荐

  1. 解决java中按照数字大小来排序文件

    我们想要输出(1.jpg.2.jpg.3.jpg.10.jpg.11.jpg.20.jpg.21.jpg.31.jpg) 突然看到网上一些写法 总结:既然自己按照定义的文件名规则来处理,也可以进行使用 ...

  2. 数组Array的相关操作。

    一 数组的对象(元素): 1. 数字, 2 .字符串 3 变量 4. 函数 .... 二 数组的创建 1 var arrayObj = new Array(); var a =new Array(si ...

  3. Codeforces 384E-线段树+dfs序

    如果这题只传到儿子不继续向下就是裸的dfs序+线段树,继续往下传的还改变正负号,我们可以根据它的层数来确定正负号 #include<bits/stdc++.h> #define inf 0 ...

  4. 服务器配置,负载均衡时需配置MachineKey

    服务器配置,负载均衡时需配置MachineKey https://blog.csdn.net/liuqiao0327/article/details/54018922 Asp.Net应用程序中为什么要 ...

  5. 《深入理解java虚拟机》笔记(8)类的加载机制

    一.类加载机制 类加载器将类的.class文件中的二进制数据读入到内存中,将其放在方法区内,然后在堆区创建一个java.lang.Class对象,用来封装类在方法区内的数据结构.类的加载的最终产品是位 ...

  6. csrf攻击实例

    CSRF 攻击可以在受害者毫不知情的情况下以受害者名义伪造请求发送给受攻击站点,从而在并未授权的情况下执行在权限保护之下的操作.比如说,受害者 Bob 在银行有一笔存款,通过对银行的网站发送请求 ht ...

  7. (译)Cg Programming/Unity(Cg编程/Unity)

    最近在学习Unity3d中的shader编程,能找到的中文资料比较少,于是,尝试翻译一下wiki Books上的资料,以方便其他跟我一样的入门学习者.由于是第一次翻译技术资料,经验不足,难免出错,请路 ...

  8. java 使用uuid生成唯一字符串

    UUID(Universally Unique Identifier)全局唯一标识符,是指在一台机器上生成的数字,它保证对在同一时空中的所有机器都是唯一的.按照开放软件基金会(OSF)制定的标准计算, ...

  9. JavaBean+jsp开发模式 --结合form表单 实例

    1.创建form表单 <%@ page language="java" contentType="text/html; charset=UTF-8" pa ...

  10. SQL数据库基础三