【数学 思维题】HDU4473Exam
过程很美妙啊
Problem Description
Believe it or not, in the next exam she faces a hard problem described as follows.
Let’s denote f(x) number of ordered pairs satisfying (a * b)|x (that is, x mod (a * b) = 0) where a and b are positive integers. Given a positive integer n, Rikka is required to solve for f(1) + f(2) + . . . + f(n).
According to story development we know that Rikka scores slightly higher than average, meaning she must have solved this problem. So, how does she manage to do so?
Input
For each test case, there is a single line containing only one integer n (1 ≤ n ≤ 1011).
Input is terminated by EOF.
Output
题目大意
求有序三元组$(a,b,c)$满足$a*b*c=n$的个数
题目分析
考虑以下三种做法:
大力卷积吧!
发现$\sum_{abc=n} \textbf{1}$这是一个卷积的形式,那么卷两次即可。
时间复杂度:$O(n\ln n)$
线性筛
注意到$n$的质因数之间互不影响。那么考虑将$n$分解为$n=p_1^{a_1}\times p_2^{a_2}\times \cdots \times p_k^{a_k}$的形式,于是答案就是${\rm f(n)}={(a_1+1)\times (a_1+2)\over{2}}\times {(a_2+1)\times (a_2+2)\over{2}}\times \cdots \times {(a_k+1)\times (a_k+2)\over{2}}$.
这样子做一遍线性筛就好了。
时间复杂度:$O(n)$
转化一下
注意到这个顺序实际上不是必要的,也就是说完全可以算出无序的答案之后反过来考虑有序,即$abc≤n$的答案数.
那么只需要枚举$a,b$,就可以得到$c$的范围即$[b,{\left \lfloor \frac{n}{ab} \right \rfloor}]$。
此时若$a=b$,如果$c=b$会产生1种方案;$c≠b$有${\left \lfloor \frac{n}{ab} \right \rfloor}-b$种情况、而每一种情况会产生3种方案。这里所谓产生的方案即有序所带来的额外贡献。那么$a≠b$时同理。
时间复杂度:$O(n^{\frac{2}{3}})$
#include<bits/stdc++.h>
typedef long long ll; ll n,ans;
int scenario; int main()
{
while (scanf("%lld",&n)!=EOF)
{
ans = ;
for (ll i=; i*i*i<=n; i++)
for (ll j=i; i*j*j<=n; j++)
{
ll k = n/(i*j);
if (j > k) break;
if (i==j) ans += (k-j)*3ll+;
else ans += (k-j)*6ll+;
}
printf("Case %d: %lld\n",++scenario,ans);
}
return ;
}
END
【数学 思维题】HDU4473Exam的更多相关文章
- PJ考试可能会用到的数学思维题选讲-自学教程-自学笔记
PJ考试可能会用到的数学思维题选讲 by Pleiades_Antares 是学弟学妹的讲义--然后一部分题目是我弄的一部分来源于洛谷用户@ 普及组的一些数学思维题,所以可能有点菜咯别怪我 OI中的数 ...
- 51Nod 1003 阶乘后面0的数量(数学,思维题)
1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720 ...
- Gym 100801D Distribution in Metagonia (数学思维题)
题目:传送门.(需要下载PDF) 题意:t组数据,每组数据给定一个数ni(1 ≤ ni ≤ 10^18),把ni拆成尽可能多的数,要求每个数的素因子只包含2和3,且这些数不能被彼此整除,输出一共能拆成 ...
- BZOJ4377 Kurs szybkiego czytania \ Luogu 3589[POI2015]KUR - 数学思维题
Solution 我又双叒叕去看题解啦$QAQ$, 真的想不到鸭 输入 $a$ 和 $n$ 互质, 所以满足 $a \times i \ mod \ n$ $(0<=i<n)$ 肯定是不重 ...
- BZOJ4377[POI2015]Kurs szybkiego czytania——数学思维题
题目描述 给定n,a,b,p,其中n,a互质.定义一个长度为n的01串c[0..n-1],其中c[i]==0当且仅当(ai+b) mod n < p.给定一个长为m的小01串,求出小串在大串中出 ...
- EOJ2018.10 月赛(B 数学+思维题)
传送门:Problem B https://www.cnblogs.com/violet-acmer/p/9739115.html 题意: 找到最小的包含子序列a的序列s,并且序列s是 p -莫干山序 ...
- EOJ2018.10 月赛(A 数学+思维题)
传送门:Problem A https://www.cnblogs.com/violet-acmer/p/9739115.html 题意: 能否通过横着排或竖着排将 1x p 的小姐姐填满 n x m ...
- zoj 2818 Root of the Problem(数学思维题)
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2818 题目描述: Given positive integer ...
- HDU5742 It's All In The Mind 数学思维题
Problem Description Professor Zhang has a number sequence a1,a2,...,an. However, the sequence is not ...
随机推荐
- dshow整体框架前期构思
主要组成: ------理想在线平台---------- A:网站组成 1.产品方案介绍部分 2.用户注册管理部分 3.模块介绍及购买 4.普通 工单部分,vip在线部分 B:四大平台 1.打分平台 ...
- STP-9-处理RSTP中的拓扑变化
STP能识别四种不同的拓扑变化事件, 而RSTP只有当非边界端口从非转发状态变为转发状态才认为发生了拓扑变化事件 因为刚变为转发状态的端口可以为一些mac地址提供比之前更好的路径,CAM表需要更新.失 ...
- JavaScript 与 CSS 滚动实现最新指南
一些(网站)滚动的效果是如此令人着迷但你却不知该如何实现,本文将为你揭开它们的神秘面纱.我们将基于最新的技术与规范为你介绍最新的 JavaScript 与 CSS 特性,(当你付诸实践时)将使你的页面 ...
- Codeforces Round #431 (Div. 2) C
From beginning till end, this message has been waiting to be conveyed. For a given unordered multise ...
- 2017"百度之星"程序设计大赛 - 初赛(B)小小粉丝度度熊
Problem Description 度度熊喜欢着喵哈哈村的大明星——星星小姐. 为什么度度熊会喜欢星星小姐呢? 首先星星小姐笑起来非常动人,其次星星小姐唱歌也非常好听. 但这都不是最重要的,最重要 ...
- Centos安装TensorFlow和Keras
安装命令如下: curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py python get-pip.py pip install tensor ...
- Aspose.word直接转pdf
using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...
- Spring Task ABC
配置说明 <task:annotation-driven scheduler="xxxScheduler" /> <task:scheduler id=" ...
- MVC FileResult
你如何将文件传送给用户取决于你最开始如何存储它,如果你将文件存入数据库,你会用流的方式将文件返还给用户,如果你将文件存在硬盘中,你只需要提供一个超链接即可,或者也可以以流的方式.每当你需要以流的方式将 ...
- MVC3 自定义的错误页
ASP.NET MVC3中如果配置文件出错了,怎么跳转到自定义的错误页,现在参考网上的档案是说 添加 如下配置文件,并且在路径Views/Shared/下添加Error页面,测试下没有用的,请大家看看 ...