题目描述

回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*)。她发现,把大池子视为01矩阵(0表示对应位置无鱼,1表示对应位置有鱼)有助于决定吃鱼策略。

在代表池子的01矩阵中,有很多的正方形子矩阵,如果某个正方形子矩阵的某条对角线上都有鱼,且此正方形子矩阵的其他地方无鱼,猫猫就可以从这个正方形子矩阵“对角线的一端”下口,只一吸,就能把对角线上的那一队鲜鱼吸入口中。

猫猫是个贪婪的家伙,所以她想一口吃掉尽量多的鱼。请你帮猫猫计算一下,她一口下去,最多可以吃掉多少条鱼?

输入输出格式

输入格式:

有多组输入数据,每组数据:

第一行有两个整数n和m(n,m≥1),描述池塘规模。接下来的n行,每行有m个数字(非“0”即“1”)。每两个数字之间用空格隔开。

对于30%的数据,有n,m≤100

对于60%的数据,有n,m≤1000

对于100%的数据,有n,m≤2500

输出格式:

只有一个整数——猫猫一口下去可以吃掉的鱼的数量,占一行,行末有回车。


emmmm,刚看到这道题,这不是很显然吗,用f[i][j]表示以(i,j)为正方形的右下角所满足题意的最大正方形的边长,则转移方程为

if(a[i][j] == ) {
int x = f[i - ][j - ];
int x1 = i - x, y1 = j - x;
if(sum[i][j] - sum[x1 - ][j] - sum[i][y1 - ] + sum[x1 - ][y1 - ] == x + ) {
f[i][j] = x + ;
}
}

再镜面对称过来,嗯,应该A掉了,提交~~~~     ???嗯?怎么WA了一组,应该是细节问题,调试~~~~~

    两天后......

怎么还没过啊,昧着良心看一下题解吧,wow,竟然有大问题,因为这种做法太过于极端,要不全部保留,要不不保留,所以无法确定该点最大的正方形,应逐一枚举左上那个点的边长,找到能满足的最大值后跳出

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 5e5 + ;
const int MAXM = 3e3 + ; template < typename T > inline void read(T &x) {
x = ; T ff = , ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') ff = -;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << ) + (x << ) + (ch ^ );
ch = getchar();
}
x *= ff;
} template < typename T > inline void write(T x) {
if(x < ) putchar('-'), x = -x;
if(x > ) write(x / );
putchar(x % + '');
} int n, m, maxx = -INF, a[MAXM][MAXM], b[MAXM][MAXM], sum[MAXM][MAXM], f[MAXM][MAXM]; int main() {
// freopen("1.in", "r", stdin);
read(n); read(m);
for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) {
read(a[i][j]);
sum[i][j] = sum[i - ][j] + sum[i][j - ] - sum[i - ][j - ] + a[i][j];
}
} /* for(int len = 1; len <= min(n, m); ++len) {
for(int i = 1; i <= n - len + 1; ++i) {
for(int j = 1; j <= m - len + 1; ++j) {
int x1 = i + len - 1;
int y1 = j + len - 1;
if(sum[x1][y1] - sum[i - 1][y1] - sum[x1][j - 1] + sum[i - 1][j - 1] != len * len) continue; }
}
}*/
for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) {
if(a[i][j] == ) {
int x = f[i - ][j - ];
for(int k = x; k >= ; --k) {
int x1 = i - k, y1 = j - k;
if(sum[i][j] - sum[x1 - ][j] - sum[i][y1 - ] + sum[x1 - ][y1 - ] == k + ) {
f[i][j] = k + ;
break;
}
}
}
maxx = max(maxx, f[i][j]);
}
}
// memset(sum, 0, sizeof(sum));
for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) {
b[i][j] = a[i][m - j + ];
// sum[i][j] = sum[i][m - j + 1];
sum[i][j] = sum[i - ][j] + sum[i][j - ] - sum[i - ][j - ] + b[i][j];
}
}
for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) {
if(b[i][j] == ) {
int x = f[i - ][j - ];
for(int k = x; k >= ; --k) {
int x1 = i - k, y1 = j - k;
if(sum[i][j] - sum[x1 - ][j] - sum[i][y1 - ] + sum[x1 - ][y1 - ] == k + ) {
f[i][j] = k + ;
break;
}
}
}
maxx = max(maxx, f[i][j]);
}
}
write(maxx);
putchar('\n');
return ;
}

P1295-创意吃鱼的更多相关文章

  1. P1387 最大正方形&&P1736 创意吃鱼法

    P1387 最大正方形 P1736 创意吃鱼法 两道类似的$DP$ 转移方程基本上类似于$f[i][j]=min(f[i-1][j-1],min(f[i][j-1],f[i-1][j]))$ 考虑构成 ...

  2. 洛谷 P1736 创意吃鱼法 Label:dp || 前缀和

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  3. 洛谷P1736 创意吃鱼法

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  4. P1736 创意吃鱼法 图的DP

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  5. 洛谷 P1736 创意吃鱼法

    题目描述 题目链接:https://www.luogu.org/problemnew/show/P1736 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢( ...

  6. P1736 创意吃鱼法

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  7. 洛谷P1736 创意吃鱼法 dp

    正解:dp 解题报告: 早就想写dp的题目辣!我发现我的dp好差啊QAQ所以看到列表的小朋友写dp的题目就跟着他们的步伐做下题好辣QwQ 这题的话没有那——么难,大概说下趴QwQ 首先说下题意 前面一 ...

  8. P1736 创意吃鱼法80

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  9. 洛谷 P1736 创意吃鱼法(多维DP)

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  10. P1736 创意吃鱼法 (动态规划)

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

随机推荐

  1. mvn 创建的项目 导入到eclipse

    首先,我的工具版本如下: jdk: java version "1.6.0_10-rc2"; maven: apache-maven-3.1.0; eclipse: MyEclip ...

  2. DOM的构建与优化

    一.构建模块 HTML描述了一个页面的结构.浏览器会将它转换成一种他们能够理解的格式——文档对象模型(DOM),浏览器引擎有一段特殊的代码叫做解析器,将数据从一种格式转换成另外一种格式. 一个HTML ...

  3. 解读 CSS 布局之水平垂直居中

    对一个元素水平垂直居中,在我们的工作中是会经常遇到的,也是CSS布局中很重要的一部分,本文就来讲讲CSS水平垂直居中的一些方法.由于我们大搜车的日常工作中已经不再需要理会低版本IE,所以本文所贴出的方 ...

  4. c++的最小整数和最大整数

    #include<iostream> #include<cmath> using namespace std; int main() { //int -2147483648~2 ...

  5. html中css的三种样式

    在html中定义CSS样式的方法有三种,新建CSS文件 使用link 关联 这种是最常用的外部引用样式,第二种讲样式写在 head 头部里面 这种是页面样式 ,第三中样式直接写在行内  style里面 ...

  6. linux启动全过程

    参考: http://www.staroceans.org/e-book/linux-bootstrap-1.html 1. MBR里的内容属于grub grub-2.02\grub-core\boo ...

  7. python-多线程1

    程序\进程\线程的关系: 程序(program) 一组功能集合的静态描述,程序至少有一个进程 进程(process) 进程是系统进行资源分配和调度的,他们拥有自己独立的空间,进程至少有一个线程 线程( ...

  8. Java中的访问控制

    修饰符 同一个类 同一个包 子类 整体 private Yes       default Yes Yes     protected Yes Yes Yes   public Yes Yes Yes ...

  9. osx快捷键表示图

  10. mysql数据库表分区详解(数量过大的数据库表通过分区提高查询速度)

    这篇文章主要介绍了MySQL的表分区,例如什么是表分区.为什么要对表进行分区.表分区的4种类型详解等,需要的朋友可以参考下 一.什么是表分区通俗地讲表分区是将一大表,根据条件分割成若干个小表.mysq ...