zoj3494 BCD Code(AC自动机+数位dp)
Binary-coded decimal (BCD) is an encoding for decimal numbers in which each digit is represented by its own binary sequence. To encode a decimal number using the common BCD encoding,
each decimal digit is stored in a 4-bit nibble:
Decimal: 0 1 2 3 4 5 6 7 8 9
BCD: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
Thus, the BCD encoding for the number 127 would be:
0001 0010 0111
We are going to transfer all the integers from A to B, both inclusive, with BCD codes. But we find that some continuous bits, named forbidden code, may lead to errors.
If the encoding of some integer contains these forbidden codes, the integer can not be transferred correctly. Now we need your help to calculate how many integers can be transferred correctly.
Input
There are multiple test cases. The first line of input is an integer T ≈ 100 indicating the number of test cases.
The first line of each test case contains one integer N, the number of forbidden codes ( 0 ≤ N ≤ 100). Then N lines follow, each of which contains a 0-1 string
whose length is no more than 20. The next line contains two positive integers A and B. Neither A or B contains leading zeros and 0 < A ≤ B < 10200.
Output
For each test case, output the number of integers between A and B whose codes do not contain any of the N forbidden codes in their BCD codes. For the result
may be very large, you just need to output it mod 1000000009.
Sample Input
3
1
00
1 10
1
00
1 100
1
1111
1 100
Sample Output
3
9
98
题意:给出一些模式串,给出一个范围[A,B],求出区间内有多少个数,写成BCD之后,不包含模式串。
思路:先用AC自动机存下不符合的节点,然后预处理出bcd[i][j]表示ac自动机节点i走j这个数后的节点编号或者-1,然后用dp[i][j]表示前i位,当前ac节点为j的方案数。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 300050
#define maxnode 2050
#define MOD 1000000009
int bcd[maxnode][11]; //bcd[i][j]表示ac自动机状态i走j步后的状态
struct trie{
int sz,root,val[maxnode],next[maxnode][2],fail[maxnode];
int q[11111];
void init(){
int i;
sz=root=0;
val[0]=0;
for(i=0;i<2;i++){
next[root][i]=-1;
}
}
void charu(char *s){
int i,j,u=0;
int len=strlen(s);
for(i=0;i<len;i++){
int c=s[i]-'0';
if(next[u][c]==-1){
sz++;
val[sz]=0;
next[u][c]=sz;
u=next[u][c];
for(j=0;j<2;j++){
next[u][j]=-1;
}
}
else{
u=next[u][c];
}
}
val[u]=1;
}
void build(){
int i,j;
int front,rear;
front=1;rear=0;
for(i=0;i<2;i++){
if(next[root][i]==-1 ){
next[root][i]=root;
}
else{
fail[next[root][i] ]=root;
rear++;
q[rear]=next[root][i];
}
}
while(front<=rear){
int x=q[front];
if(val[fail[x]]) //!!!!!
val[x]=1;
front++;
for(i=0;i<2;i++){
if(next[x][i]==-1){
next[x][i]=next[fail[x] ][i];
}
else{
fail[next[x][i] ]=next[fail[x] ][i];
rear++;
q[rear]=next[x][i];
}
}
}
}
}ac;
int change(int jiedian,int num)
{
int i,j,len=0;
int shu[10];
while(num){
shu[++len]=num%2;
num/=2;
}
while(len<4)shu[++len]=0;
for(i=4;i>=1;i--){
if(ac.val[ac.next[jiedian][shu[i] ] ]==1 )return -1;
else jiedian=ac.next[jiedian][shu[i] ];
}
return jiedian;
}
void pre_init()
{
int i,j;
for(i=0;i<=ac.sz;i++){
for(j=0;j<=9;j++){
bcd[i][j]=change(i,j);
}
}
}
int wei[300];
ll dp[300][maxnode];
ll dfs(int pos,int jiedian,int lim,int zero)
{
int i,j;
if(pos==-1)return 1;
if(lim==0 && zero==0 && dp[pos][jiedian]!=-1){ //这里和下面同理,也不要省略zero==0
return dp[pos][jiedian];
}
int ed=lim?wei[pos]:9;
ll ans=0;
for(i=0;i<=ed;i++){
if(i==0){
if(zero){
ans+=dfs(pos-1,jiedian,0,1);
ans%=MOD;
}
else{
if(bcd[jiedian][0]!=-1){
ans+=dfs(pos-1,bcd[jiedian][0],lim&&i==ed,0);
ans%=MOD;
}
}
continue;
}
if(bcd[jiedian][i]!=-1){
ans+=dfs(pos-1,bcd[jiedian][i],lim&&i==ed,0);
ans%=MOD;
}
}
if(lim==0 && zero==0 ){ //这里要注意,不能写成if(lim==0)dp[pos][jiedian]=ans;因为zero不为0的话,即最高位还没有确定,那么可能后面几位都可以跳过去,
dp[pos][jiedian]=ans; //即可以把0跳过,但是对于最高位确定的情况下,后面不管加什么数都不能跳过去,即使是0也要在ac自动机上走0这个数.
}
return ans;
}
ll cal(char *s)
{
int i,j,len;
len=strlen(s);
for(i=0;i<len;i++){
wei[i]=s[len-1-i]-'0';
}
return dfs(len-1,0,1,1);
}
char s1[300],s2[300],s[30];
int main()
{
int n,m,i,j,T,len1,len2;
scanf("%d",&T);
while(T--)
{
ac.init();
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%s",s);
ac.charu(s);
}
ac.build();
pre_init();
scanf("%s",s1);
len1=strlen(s1);
reverse(s1,s1+len1);
for(i=0;i<len1;i++){ //这里算的是(l,r],所以先要把s1的数减去1
if(s1[i]-'0'>0){
s1[i]--;break;
}
else{
s1[i]='9';
}
}
memset(dp,-1,sizeof(dp));
ll ans=0;
if(s1[len1-1]=='0')len1-=1;
s1[len1]='\0';
reverse(s1,s1+len1);
ans-=cal(s1);
ans%=MOD;
scanf("%s",s2);
ans+=cal(s2);
ans%=MOD;
if(ans<0){
ans=(ans+MOD)%MOD;
}
printf("%lld\n",ans);
}
return 0;
}
zoj3494 BCD Code(AC自动机+数位dp)的更多相关文章
- ZOJ 3494 BCD Code(AC自动机+数位DP)
BCD Code Time Limit: 5 Seconds Memory Limit: 65536 KB Binary-coded decimal (BCD) is an encoding ...
- zoj3494BCD Code(ac自动机+数位dp)
l链接 这题想了好一会呢..刚开始想错了,以为用自动机预处理出k长度可以包含的合法的数的个数,然后再数位dp一下就行了,写到一半发现不对,还要处理当前走的时候是不是为合法的,这一点无法移到trie树上 ...
- 【HDU3530】 [Sdoi2014]数数 (AC自动机+数位DP)
3530: [Sdoi2014]数数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 682 Solved: 364 Description 我们称一 ...
- 【bzoj3530】[Sdoi2014]数数 AC自动机+数位dp
题目描述 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3223不是幸运 ...
- BZOJ 3530 [SDOI2014]数数 (Trie图/AC自动机+数位DP)
题目大意:略 裸的AC自动机+数位DP吧... 定义f[i][x][0/1]表示已经匹配到了第i位,当前位置是x,0表示没到上限,1到上限,此时数是数量 然而会出现虚拟前导零,即前几位没有数字的情况, ...
- BCD Code ZOJ - 3494 AC自动机+数位DP
题意: 问A到B之间的所有整数,转换成BCD Code后, 有多少个不包含属于给定病毒串集合的子串,A,B <=10^200,病毒串总长度<= 2000. BCD码这个在数字电路课上讲了, ...
- ZOJ 3494 BCD Code(AC自动机 + 数位DP)题解
题意:每位十进制数都能转化为4位二进制数,比如9是1001,127是 000100100111,现在问你,在L到R(R <= $10^{200}$)范围内,有多少数字的二进制表达式不包含模式串. ...
- BZOJ3530:[SDOI2014]数数(AC自动机,数位DP)
Description 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3 ...
- 【JZOJ3624】【SDOI2014】数数(count) AC自动机+数位dp
题面 100 容易想到使用AC自动机来处理禁忌子串的问题: 然后在自动机上数位dp,具体是: \(f_{i,j,0/1}\)表示填了\(i\)位,当前在自动机的第\(j\)个结点上,\(0\)表示当前 ...
随机推荐
- linux常用命令--转载
转载自: https://www.cnblogs.com/Qsunshine/p/10402179.html 常用指令 ls 显示文件或目录 -l列出文件详细信息l(list) -a列出当前目录下所有 ...
- (数据科学学习手札103)Python+Dash快速web应用开发——页面布局篇
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- Jenkins上实现Python + Jenkins + Allure Report 接口自动化测试持续集成,最终测试报告用allure-report进行展示
项目介绍 接口功能测试应用:http://www.weather.com.cn/data/cityinfo/<city_code>.html 测试功能:获取对应城市的天气预报 源码:Pyt ...
- Java设计模式精讲之UML急速入门
简单记录 - 慕课网 - Java设计模式精讲 Debug方式+内存分析 文章目录 第2章 UML急速入门 2-1.UML简单入门 UML定义 UML特点 UML 2.2分类 UML类图 理解泛化.实 ...
- oracle常用hint添加
1.视图添加索引 /* Formatted on 2020/1/6 下午 04:46:37 (QP5 v5.163.1008.3004) */ SELECT /*+index(VIEW_NAME.TA ...
- 【对线面试官】Java多线程基础
// 请求直接交给线程池来处理 public void push(PushParam pushParam) { try { pushServiceThreadExecutor.submit(() -& ...
- 02--Docker配置阿里云镜像加速器
1.登录阿里云控制台,在产品与服务中收索 "容器镜像服务" 2.点击镜像加速器,CentOS 3.在路径 /etc/docker/daemon.json 下配置加速器地址 4.重新 ...
- 2V转3V的电源芯片电路图,2.4V转3V电路
两节镍氢电池1.2V+1.2V是2.4V的标称电压,2.4V可以转3V输出电路应用. 在2.4V转3V和2V转3V的应用中,输出电流可最大600MA. 2V的低压输入,可以采用PW5100低压输入专用 ...
- 01. struts2介绍
struts2优点 与Servlet API 耦合性低.无侵入式设计 提供了拦截器,利用拦截器可以进行AOP编程,实现如权限拦截等功能 支持多种表现层技术,如:JSP.freeMarker.veloc ...
- OpenDaylight — YANG
1. 介绍 YANG 是一种用于为 NETCONF 协议建模数据的语言. YANG 将数据的层次结构建模为一棵树. 2. 节点类型 2.1 leaf 它只有一个特定类型的值,并且没有子节点. YANG ...