LINK:数独

这道题好难 比DXL模板题要难上不少.

首先 还是考虑将行当做决策 那么 一共有\(9*9*9=729\) 个决策.

考虑列用来填充 需要有的条件为 某个位置能能放一次\(9*9\) 某行放一个x 某列放一个x 某九宫放一个.

那么列数为\(4*9*9=324\)。

考虑1的个数 每一行都有这4种形式 所以一共存在\(4*9*9*9=2916\)个1.

图非常容易建出来 注意答案的输出。(每一次写都相当于学了一遍 什么时候才能学会呢

const int MAXN=3510,maxn=10;
int W=9,n,m,cnt;
int a[maxn][maxn],b[maxn][maxn];
int l[MAXN],r[MAXN],col[MAXN],row[MAXN],u[MAXN],d[MAXN],h[MAXN],s[MAXN],ans[MAXN];
inline void prepare()
{
rep(0,m,i)
{
l[i]=i-1;
r[i]=i+1;
u[i]=d[i]=i;
}
r[m]=0;l[0]=m;
memset(h,-1,sizeof(h));
cnt=m;
}
inline void Link(int x,int y)
{
++s[y];
row[++cnt]=x;col[cnt]=y; u[cnt]=y;d[cnt]=d[y];
u[d[y]]=cnt;d[y]=cnt;
if(h[x]==-1)h[x]=r[cnt]=l[cnt]=cnt;
else
{
r[cnt]=h[x];
l[cnt]=l[h[x]];
r[l[h[x]]]=cnt;
l[h[x]]=cnt;
}
}
inline void remove(int y)
{
r[l[y]]=r[y];l[r[y]]=l[y];
for(int i=d[y];i!=y;i=d[i])//枚举行
{
for(int j=r[i];j!=i;j=r[j])//删除列
{
u[d[j]]=u[j];
d[u[j]]=d[j];
--s[col[j]];
}
}
}
inline void resume(int y)
{
for(int i=u[y];i!=y;i=u[i])
{
for(int j=l[i];j!=i;j=l[j])
{
u[d[j]]=j;
d[u[j]]=j;
++s[col[j]];
}
}
r[l[y]]=y;l[r[y]]=y;
}
inline void dance(int dep)
{
if(!r[0])
{
rep(1,dep-1,i)
{
int cc=(ans[i]-1)%9+1;
int y=(ans[i]-1)/9%9+1;
int x=(ans[i]-1)/9/9+1;
b[x][y]=cc;
}
rep(1,W,i)
{
rep(1,W,j)put_(b[i][j]);
puts("");
}
exit(0);
}
int y=r[0];
for(int i=r[0];i;i=r[i])if(s[i]<s[y])y=i;
remove(y);
for(int i=d[y];i!=y;i=d[i])
{
ans[dep]=row[i];
for(int j=r[i];j!=i;j=r[j])remove(col[j]);
dance(dep+1);
for(int j=l[i];j!=i;j=l[j])resume(col[j]);
}
resume(y);
}
int main()
{
freopen("1.in","r",stdin);
m=324;n=729;prepare();
rep(1,W,i)rep(1,W,j)
{
get(a[i][j]);
rep(1,W,k)
{
if(a[i][j]&&a[i][j]!=k)continue;
int id=(W*(i-1)+(j-1))*W+k;
int w1=(j-1)*W+k;//某一列要有k.
int w2=W*W+(i-1)*W+k;//某一行要有k.
int w3=W*W*2+(i-1)*W+j;//某个位置只能放一次.
int w4=W*W*3+((i-1)/3*3+(j-1)/3)*9+k;
Link(id,w1);Link(id,w2);Link(id,w3);Link(id,w4);
}
}
dance(1);return 0;
}

luogu P1784 数独 dfs 舞蹈链 DXL的更多相关文章

  1. 洛谷 P1784 数独[DFS/回溯]

    To 洛谷.1784 数独类似题:CODEVS.4966 简单数独(4*4数独) CODEVS.2924 数独挑战) 题目描述 数独是根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行 ...

  2. 算法实践——舞蹈链(Dancing Links)算法求解数独

    在“跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题”一文中介绍了舞蹈链(Dancing Links)算法求解精确覆盖问题. 本文介绍该算法的实际运用,利用舞蹈链(Dancin ...

  3. 转载 - 算法实践——舞蹈链(Dancing Links)算法求解数独

    出处:http://www.cnblogs.com/grenet/p/3163550.html 在“跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题”一文中介绍了舞蹈链(Dan ...

  4. luogu P4929 【模板】舞蹈链 DLX

    LINK:舞蹈链 具体复杂度我也不知道 但是 搜索速度极快. 原因大概是因为 每次检索的时间少 有一定的剪枝. 花了2h大概了解了这个东西 吐槽一下题解根本看不懂 只能理解大概的想法 核心的链表不太懂 ...

  5. HDU 1426(数独 DFS)

    题意是完成数独. 记录全图,将待填位置处填 0,记录下所有的待填位置,初始化结束.在每个待填位置处尝试填入 1 - 9,若经过判断后该位置可以填入某数字,则继续向下填下一个位置, 回溯时把待填位置重新 ...

  6. 舞蹈链 DLX

    欢迎访问——该文出处-博客园-zhouzhendong 去博客园看该文章--传送门 舞蹈链是一个非常玄学的东西…… 问题模型 精确覆盖问题:在一个01矩阵中,是否可以选出一些行的集合,使得在这些行的集 ...

  7. poj 1084 舞蹈链(纠结题)

    此题反正我自己是认为poj给的数据范围是有错的,不知道是不是自己太弱了,有大神在的话,欢迎来呸! 其实目的就在于建图,搞的我后来建了一个无比纠结的图,先建立了火柴棍和正方形的一个全图,然后再删除一些火 ...

  8. 舞蹈链(DLX)

    舞蹈链(DLX) Tags:搜索 作业部落 评论地址 一.概述 特别特别感谢这位童鞋His blog 舞蹈链是一种优美的搜索,就像下面这样跳舞- 舞蹈链用于解决精确覆盖或者重复覆盖的问题 你可以想象成 ...

  9. Dancing Links算法(舞蹈链)

    原文链接:跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题 作者:万仓一黍 出处:http://grenet.cnblogs.com/ 本文版权归作者和博客园共有,欢迎转载,但 ...

随机推荐

  1. mongodb安装与mongo vue的使用

    首先,下载mongodb,然后安装 http://downloads.mongodb.com/win32/mongodb-win32-x86_64-enterprise-windows-64-2.6. ...

  2. 01.RabbitMQ简单使用

    官网地址:https://www.rabbitmq.com/getstarted.html RabbitMQ 优点: 数据处理异步执行: 应用之间解耦: 流量削峰 1.docker 安装 Rabbit ...

  3. Centos 6.4最小化安装后的优化(2)

    1.关闭不必要的服务 众所周知,服务越少,系统占用的资源就会越少,所以应当关闭不需要的服务器.首先可以先看下系统中存在哪些已经开启了的服务.查看命令如下: ntsysv 下面列出的是需要启动的服务器, ...

  4. JVM 专题十三:运行时数据区(八)直接内存

    1. 直接内存 不是虚拟机运行时数据区的一部分,也不是<Java虚拟机规范>中定义的内存区域. 直接内存是Java堆外的.直接向系统申请的内存区间. 来源于NIO,通过存在堆中的Direc ...

  5. 数据库04 /多表查询、pymysql模块

    数据库04 /多表查询.pymysql模块 目录 数据库04 /多表查询.pymysql模块 1. 笛卡尔积 2. 连表查询 2.1 inner join 内连接 2.2 left join 左连接 ...

  6. Django之 admin组件

    本节内容 路由系统 models模型 admin  views视图 template模板 Django Admin介绍 admin 是django 自带的用来让你进行数据库管理的web app. 提供 ...

  7. Show information of directory or disk

    There are so many commands of Ubuntu, we just need to know useful and high-frequency commands. I hav ...

  8. 一个例子理解c++函数模板的编译

    一.例子 template <typename T> inline void callWithMax(const T& a, const T& b){ f(a > b ...

  9. bzoj1673[Usaco2005 Dec]Scales 天平*

    bzoj1673[Usaco2005 Dec]Scales 天平 题意: n个砝码,每个砝码重量大于前两个砝码质量和,天平承重为c,求天平上最多可放多种的砝码.n≤1000,c≤2^30. 题解: 斐 ...

  10. socket采用epoll编程demo

    epoll工作流程 首先,需要调用epoll_create创建epoll: 此后我们就可以进行socket/bind/listen: 然后调用epoll_ctl进行注册: 接下来,就可以通过一个whi ...