每次询问是关于 \(x\) 所在的连通块,所以考虑用点分树来解决本题。

点分树上每个节点所对应的子树,都是原树中的一个连通块。询问中给定 \(x\) 和区间 \([l,r]\),其就已经确定了原树的一个连通块,所以可以在点分树上找到最大的一个子树包含该连通块,统计其内部合法点的个数即可。

首先处理出点分树上每个点在原树上到点分树根节点的链上所有节点路径经过节点编号的最小值和最大值。对于每个询问,在 \(x\) 到根节点的链上找到深度最浅的一个点,且原树上 \(x\) 到其路径经过节点编号的最小值和最大值在区间 \([l,r]\) 内,这个节点所对应的子树就包含了该询问所对应的连通块,将询问挂到这个节点上。对于这个询问,\(x\) 和找到的这个节点是连通的,所以只需统计子树内有多少节点是和该节点连通,即其子树内有多少个点在原树上到该节点的路径经过节点编号的最小值和最大值在区间 \([l,r]\) 内。

然后可以遍历点分树上每个点的子树来处理询问,因为点分树所有点的子树和为 \(n\ log\ n\) 级别,所以复杂度正确。

设一个节点到其点分树上子树的根节点的节点编号最小值为 \(L\),最大值为 \(R\),对于询问 \([l,r]\),只有当 \(l \leqslant L,r \geqslant R\),且其颜色是第一次出现,该点才会对这个询问产生贡献。可以先对节点和询问的 \(L\) 进行排序,然后维护每种颜色的 \(R\) 的最小值,让最小值对询问产生贡献,用树状数组维护即可。

\(code:\)

#include<bits/stdc++.h>
#define maxn 200010
#define inf 1000000000
#define lowbit(x) (x&(-x))
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,m,tot,root;
int v[maxn],mi[maxn],ma[maxn],siz[maxn],ans[maxn],t[maxn];
bool vis[maxn];
struct node
{
int l,r,id,type;
};
bool cmp(const node &a,const node &b)
{
if(a.l==b.l) return a.type<b.type;
return a.l>b.l;
}
vector<node> ve[maxn],p[maxn];
struct edge
{
int to,nxt;
}e[maxn];
int head[maxn],edge_cnt;
void add(int from,int to)
{
e[++edge_cnt]=(edge){to,head[from]};
head[from]=edge_cnt;
}
void dfs_root(int x,int fath)
{
siz[x]=1,ma[x]=0;
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(vis[y]||y==fath) continue;
dfs_root(y,x),siz[x]+=siz[y];
ma[x]=max(ma[x],siz[y]);
}
ma[x]=max(ma[x],tot-siz[x]);
if(ma[x]<ma[root]) root=x;
}
void dfs_find(int x,int fath,int l,int r)
{
p[x].push_back((node){l,r,root,0});
ve[root].push_back((node){l,r,v[x],0});
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(vis[y]||y==fath) continue;
dfs_find(y,x,min(l,y),max(r,y));
}
}
void solve(int x)
{
int now=tot;
vis[x]=true,dfs_find(x,0,x,x);
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(vis[y]) continue;
root=0,tot=siz[y];
if(siz[y]>siz[x]) tot=now-siz[x];
dfs_root(y,x),solve(root);
}
}
void update(int x,int v)
{
while(x<=n) t[x]+=v,x+=lowbit(x);
}
int query(int x)
{
int v=0;
while(x) v+=t[x],x-=lowbit(x);
return v;
}
int main()
{
read(n),read(m);
for(int i=1;i<=n;++i) read(v[i]),mi[v[i]]=inf;
for(int i=1;i<n;++i)
{
int x,y;
read(x),read(y);
add(x,y),add(y,x);
}
tot=ma[0]=n,dfs_root(1,0),solve(root);
for(int i=1;i<=m;++i)
{
int l,r,x;
read(l),read(r),read(x);
for(int j=0;j<p[x].size();++j)
{
if(l<=p[x][j].l&&r>=p[x][j].r)
{
ve[p[x][j].id].push_back((node){l,r,i,1});
break;
}
}
}
for(int i=1;i<=n;++i)
{
sort(ve[i].begin(),ve[i].end(),cmp);
for(int j=0;j<ve[i].size();++j)
{
node x=ve[i][j];
if(x.type) ans[x.id]=query(x.r);
else if(x.r<mi[x.id])
update(mi[x.id],-1),update(x.r,1),mi[x.id]=x.r;
}
for(int j=0;j<ve[i].size();++j)
{
node x=ve[i][j];
if(!x.type&&mi[x.id]==x.r)
update(x.r,-1),mi[x.id]=inf;
}
}
for(int i=1;i<=m;++i) printf("%d\n",ans[i]);
return 0;
}

题解 洛谷 P5311 【[Ynoi2011]成都七中】的更多相关文章

  1. P5311 [Ynoi2011] 成都七中

    P5311 [Ynoi2011] 成都七中 题意 给你一棵 \(n\) 个节点的树,每个节点有一种颜色,有 \(m\) 次查询操作. 查询操作给定参数 \(l\ r\ x\),需输出: 将树中编号在 ...

  2. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  3. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  4. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  5. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  6. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  7. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  8. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  9. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

随机推荐

  1. java web20套项目

    http://shenghuo.lshou.com/c4154/t5bdbcc98b9a9.html

  2. SpringBoot--使用socket搭建聊天室

    1.添加依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...

  3. python实现从文件夹随机拷贝出指定数量文件到目标文件夹

    为了方便倒腾数据,功能如题,该脚本和操作目录在同一根目录 实际运行时要手动修改程序中:cpfile_rand('img', 'outfile', 10) # 操作目录,输出目录,输出数量 import ...

  4. Python实用笔记 (23)面向对象高级编程——使用__slots__

    正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性.先定义class: class Student(object): pa ...

  5. asp.net 修饰符介绍(关于public、private、protected、internal)

    1.private修饰符 private修饰符用于设置类或类成员的访问权限仅为所属类的内部,private也被称为私有修饰符.某些时候需要访问私有类成员时,可通过get和set访问器读取或修改. 2. ...

  6. 理解与使用Javascript中的回调函数

    在Javascript中,函数是第一类对象,这意味着函数可以像对象一样按照第一类管理被使用.既然函数实际上是对象:它们能被“存储”在变量中,能作为函数参数被传递,能在函数中被创建,能从函数中返回. 因 ...

  7. Typography convention

    1 h1 Chapter title centered,number three in bold,used ##. 1.1 h2 The chapter is a section, and the s ...

  8. P3879 阅读理解

    都这么大了,you这些怎么能算生词呢,难道三年级以前就有人做蓝题了吗(是我不配) 我觉得这道题出难一点点的话,可以整行读入什么的(口嗨怪).先看题目,对于每个生词,输出他出现在了哪些文章(需要排序). ...

  9. 使用selenium抓取淘宝信息并存储mongodb

    selenium模块 简单小例子 Author:song import pyquery from selenium import webdriver from selenium.common.exce ...

  10. lodash - slice

    稀疏数组和密集数组 稀疏数组 Sparse arrays 一般来说,JavaScript 中的数组都是稀疏数组-它们可以拥有空槽,所谓空槽,指的就是数组的某个位置没有任何值,既不是 undefined ...