XJOI 夏令营501-511测试11 统计方案
小B写了一个程序,随机生成了n个正整数,分别是a[1]..a[n],他取出了其中一些数,并把它们乘起来之后模p,得到了余数c。但是没过多久,小B就忘记他选了哪些数,他想把所有可能的取数方案都找出来。你能帮他计算一下一共有多少种取数方案吗?请把最后的方案数模1000000007后输出。
小B记得他至少取了一个数。
输入格式:
第一行三个正整数n,p,c,含义如题目所述。
接下来一行有n个正整数,表示生成的n个随机数。
输出格式:
一个数,方案数模1000000007。
样例输入:
2 7 2
1 2 4
样例输出:
2
数据范围:
对于30%的数据,n≤16
另有30%的数据,p≤10000
对于100%的数据,n≤32, p≤10^9, c≤10^9, a[i]<p, p是质数
时间限制:
1 sec
空间限制:
128MB
折半搜索+逆元
因为n只有32的范围
所以考虑折半搜索,将前$\frac{n}{2}$和后$\frac{n}{2}$个元素的所有乘积处理出来
然后将这两组之间的元素进行匹配
对于一组中的乘积$a$,那么需要在另一组中找到$b$,满足$a*b \equiv c$
那么可以发现$b$为$a$的逆元$k$再乘上$c$,因为$p$是质数,那么$k$可以用费马小定理解决
即$b=a^{p-2}*c$,在$b$的数组中二分查找即可
还有这道题有个坑点
1.如果$c\geq p$答案即为0
#include <bits/stdc++.h>
#define mod 1000000007
#define ll long long
using namespace std;
ll n,p,c,a[1000],tot,ans;
vector <ll> s;
vector <pair<ll,ll> > t;
ll m_pow(ll a,ll b)//快速幂,求逆元
{
ll ans=1;
while (b)
{
if (b&1)
ans=(ans*a)%p;
b>>=1;
a=(a*a)%p;
}
return ans;
}
void dfs1(ll x,ll l,ll r,ll sum)//用dfs求出每一个乘积
{
if (x==r+1)
{
ll ne;
ne=(m_pow(sum,p-2)*c)%p;//将每一乘积需要的答案压入数组
s.push_back(ne);
return;
}
dfs1(x+1,l,r,sum);
dfs1(x+1,l,r,(sum*a[x])%p);
}
void dfs2(ll x,ll l,ll r,ll sum)
{
if (x==r+1)
{
vector <pair<ll,ll> > :: iterator it;
it=lower_bound(t.begin(),t.end(),make_pair(sum,(ll)0));//进行匹配
if ((*it).first==sum)
ans=(ans+(*it).second)%mod;
return;
}
dfs2(x+1,l,r,sum);
dfs2(x+1,l,r,(sum*a[x])%p);
}
int main()
{
scanf("%lld%lld%lld",&n,&p,&c);
for (ll i=1;i<=n;i++)
scanf("%lld",&a[i]);
if (c>=p)
{
printf("0\n");
return 0;
}
for (ll i=1;i<=n;i++)
a[i]%=p;
dfs1(1,1,n/2,1);
sort(s.begin(),s.end());
ll kind=s[0],w=1;
for (ll i=1;i<(ll)s.size();i++)
{
if (s[i]==kind)
w++;
else
{
t.push_back(make_pair(kind,w));
w=1;
kind=s[i];
}
}
t.push_back(make_pair(kind,w));
tot=0;
dfs2(n/2+1,n/2+1,n,1);
if (c==1)
ans=(ans-1)%mod;
printf("%lld\n",ans%mod);
}
XJOI 夏令营501-511测试11 统计方案的更多相关文章
- XJOI夏令营501训练1——分配工作
传送门:QAQQAQ 题意:某公司有工作人员x1,x2,…,xn ,他们去做工作y1,y2,…,ym(n<=m) ,每个人都能做其中的几项工作,并且对每一项工作都有一个固定的效率.问能否找到一种 ...
- test20190725 夏令营测试11
50+80+90=220.(每题满分90) 砍树 小A在一条水平的马路上种了n棵树,过了几年树都长得很高大了,每棵树都可以看作是一条长度为a[i]的竖线段.由于有的树过于高大,挡住了其他的树,使得另一 ...
- [XJOI]noip40 T2统计方案
统计方案 小B写了一个程序,随机生成了n个正整数,分别是a[1]..a[n],他取出了其中一些数,并把它们乘起来之后模p,得到了余数c.但是没过多久,小B就忘记他选了哪些数,他想把所有可能的取数方案都 ...
- 【NOIP模拟赛】chess 建图+spfa统计方案数
似乎弗洛伊德和迪杰斯特拉都干不了统计方案数,spfa的话就是不断入队就好. #include <cstdio> #include <cstring> #include < ...
- Android Activity启动耗时统计方案
作者:林基宗 Activity的启动速度是很多开发者关心的问题,当页面跳转耗时过长时,App就会给人一种非常笨重的感觉.在遇到某个页面启动过慢的时候,开发的第一直觉一般是onCreate执行速度太慢了 ...
- Java实现统计方案
统计方案 题目描述 在一无限大的二维平面中,我们做如下假设: 1.每次只能移动一格: 2.不能向后走(假设你的目的地是"向上",那么你可以向左走,可以向右走,也可以向上走,但是不可 ...
- XJOI 夏令营501-511测试11 游戏
Alice和Bob两个人正在玩一个游戏,游戏有很多种任务,难度为p的任务(p是正整数),有1/(2^p)的概率完成并得到2^(p-1)分,如果完成不了,得0分.一开始每人都是0分,从Alice开始轮流 ...
- 论APP测试中黑盒测试方案的重要性?
运筹帷幄之中,决胜千里之外.古人足不出户,通过正确的部署就能决定千里之外战争的胜利!而于测试人员而言,制定正确的测试方案,就是日后测试就是是否顺利的决定性因素. 在整个测试过程中,对测试人员.资源以及 ...
- C#技术分享【PDF转换成图片——11种方案】
1.[iTextSharp.dll],C# 开源PDF处理工具,可以任意操作PDF,并可以提取PDF中的文字和图片,但不能直接将PDF转换成图片. DLL和源码 下载地址:http://downloa ...
随机推荐
- Layman CSS3+H5实现上下垂直居中的几种主要方法
方法1:通过 translate 移位来实现 H5+CSS3: <div style="width: 100%; height: 100%; margin:0; padding: 0; ...
- 【随笔】Apache降权和禁用PHP危险函数
测试环境: Windows Server 2003 + phpstudy 首先在win2003里运行phpstudy,这里注意需要选择应用系统服务模式,应用之后重启phpstudy. 打开系统服务(开 ...
- 证明RSA算法在明文和公私钥中N不互质情况下仍然成立
关于RSA的基础过程介绍 下文中的 k 代表自然数常数,不同句子,公式中不一定代表同一个数 之前接触RSA,没有过多的思考证明过程,今天有感而发,推到了一遍 假设公钥 (e, N) , 私钥 (d, ...
- python实现单链表及链表常用功能
单链表及增删实现 单链表高级功能实现:反序,找中间结点,检测环等 参考: https://github.com/wangzheng0822/algo
- linux内核输入子系统分析
1.为何引入input system? 以前我们写一些输入设备(键盘.鼠标等)的驱动都是采用字符设备.混杂设备处理的.问题由此而来,Linux开源社区的大神们看到了这大量输入设备如此分散不堪,有木有可 ...
- WGS-84 to Web mercator
function mercator_encrypt (wgsLat, wgsLon) { var x = wgsLon * 20037508.34 / 180.; var y = Math.l ...
- Cypress系列(65)- 测试运行失败自动重试
如果想从头学起Cypress,可以看下面的系列文章哦 https://www.cnblogs.com/poloyy/category/1768839.html 重试的介绍 学习前的三问 什么是重试测试 ...
- allure安装
allure是一个通用的测试报告框架 下载地址:http://allure.qatools.ru/ 第一步:进入该页面,右上角有个download,点击进入github页面,选择最新版本下载到某个路径 ...
- 震惊!OI居然还考天体运动
看图说话 看这里: 标签: 标签竟然还是模拟,简直活到爆,物理老师狂喜
- 题解 CF1428A 【Box is Pull】
通过理解题意,我们发现: 当需要拐弯的时候,兔子需要先走回箱子的位置,再走向拐弯的方向.则拐弯操作的花费为 \(2\) .而直行的操作花费为 \(1\) . 所以, 如果不需要拐弯,也就是 \(x1= ...