Rikka With Cake

HDOJ-6681

  1. 最终的答案为射线的交点数加一。当然,我们也可以证明。证明需要用到欧拉公式 V−E+F=2 V-E+F=2V−E+F=2 。设射线的交点共 c cc 个。则在这个图中,V=K+4+K+c=2K+c+4 V=K+4+K+c=2K+c+4V=K+4+K+c=2K+c+4 , E=2∑(ci+1)+K+4=2K+2c+4 E=2\sum (c_i+1)+K+4=2K+2c+4E=2∑(ci+1)+K+4=2K+2c+4 。因此 F=2−V+E=c+2 F=2-V+E=c+2F=2−V+E=c+2 。减去外面的无穷区域,得出答案为 c+1 c+1c+1 。

    原文链接:https://blog.csdn.net/qq_43549984/article/details/99762559
  2. 首先需要先按y的值进行从小到大排序。
  3. 再对y进行离散化,所谓离散化就是将y排序后的点放在一个数组中,用点在数组中的序号代替y,达到缩小范围的作用。
  4. 其次再根据x从小到大排序,因为要根据x开始遍历。首先从左到右遍历方向指向左的点,计算交点。如果是上下方向的则update线段树记录每个点的y覆盖的线段的长度。再从右到左遍历。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
using namespace std;
int n,m,k;
struct Line{
int x;
int y;
char dir;
Line(int x1,int y1,char dir1):x(x1),y(y1),dir(dir1){}
Line(){}
};
Line line[100005];
long long sumy[100005<<2];//记录每一个纵坐标上有多少条上下方向的线经过
long long lazy[100005<<2];//懒标记
bool cmp1(Line a,Line b){
return a.x<b.x;
}
bool cmp2(Line a,Line b){
return a.y<b.y;
}
void build(int cnt,int l,int r){
sumy[cnt]=0;
lazy[cnt]=0;
if(l!=r){
int mid=(l+r)>>1;
build(cnt<<1,l,mid);
build(cnt<<1|1,mid+1,r);
}
}
void update(int x,int y,int cnt,int l,int r){
if(x<=l&&y>=r){
lazy[cnt]++;
sumy[cnt]+=(r-l+1);
return;
}
int mid=(l+r)>>1;
if(x<=mid)
update(x,y,cnt<<1,l,mid);
if(y>mid)
update(x,y,cnt<<1|1,mid+1,r);
}
void push_down(int cnt,int l,int r){
int lc=cnt<<1;
int rc=cnt<<1|1;
int mid=(l+r)>>1;
lazy[lc]+=lazy[cnt];
sumy[lc]+=1LL*(mid-l+1)*lazy[cnt];//long long 和 int相乘 ?
lazy[rc]+=lazy[cnt];
sumy[rc]+=1ll*(r-mid)*lazy[cnt];
lazy[cnt]=0;
}
long long query(int q,int cnt,int l,int r){
if(l==r&&l==q){
return sumy[cnt];
}
push_down(cnt,l,r);
int mid=(l+r)>>1;
if(l<=q&&r>=q){
if(q<=mid){
return query(q,cnt<<1,l,mid);
}else{
return query(q,cnt<<1|1,mid+1,r);
}
}else return 0;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin>>t;
while(t--){
cin>>n>>m>>k;
for(int i=0;i<k;i++){
cin>>line[i].x>>line[i].y>>line[i].dir;
//cout<<line[i].x<<line[i].y<<line[i].dir<<endl;
}
sort(line,line+k,cmp2);
for(int i=0;i<k;i++){
line[i].y=i+1;
}
sort(line,line+k,cmp1);
long long ans=0;
build(1,1,k);
for(int i=0;i<k;i++){//-------------------------left to right
if(line[i].dir=='U')
update(line[i].y,k,1,1,k);
else if(line[i].dir=='D')
update(1,line[i].y,1,1,k);
else if(line[i].dir=='L'){
ans+=query(line[i].y,1,1,k);
}
}
build(1,1,k);
for(int i=k-1;i>=0;i--){//-------------------------right to left
if(line[i].dir=='U')
update(line[i].y,k,1,1,k);
else if(line[i].dir=='D')
update(1,line[i].y,1,1,k);
else if(line[i].dir=='R'){
ans+=query(line[i].y,1,1,k);
}
}
cout<<ans+1<<endl;
}
return 0;
}

HDOJ-6681(离散化+线段树)的更多相关文章

  1. 离散化+线段树/二分查找/尺取法 HDOJ 4325 Flowers

    题目传送门 题意:给出一些花开花落的时间,问某个时间花开的有几朵 分析:这题有好几种做法,正解应该是离散化坐标后用线段树成端更新和单点询问.还有排序后二分查找询问点之前总花开数和总花凋谢数,作差是当前 ...

  2. 南阳理工 题目9:posters(离散化+线段树)

    posters 时间限制:1000 ms  |  内存限制:65535 KB 难度:6   描述 The citizens of Bytetown, AB, could not stand that ...

  3. SGU 180 Inversions(离散化 + 线段树求逆序对)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=180 解题报告:一个裸的求逆序对的题,离散化+线段树,也可以用离散化+树状数组.因为 ...

  4. 【POJ】2528 Mayor's posters ——离散化+线段树

    Mayor's posters Time Limit: 1000MS    Memory Limit: 65536K   Description The citizens of Bytetown, A ...

  5. hpu校赛--雪人的高度(离散化线段树)

    1721: 感恩节KK专场——雪人的高度 时间限制: 1 Sec  内存限制: 128 MB 提交: 81  解决: 35 [提交][状态][讨论版] 题目描述 大雪过后,KK决定在春秋大道的某些区间 ...

  6. 【BZOJ1645】[Usaco2007 Open]City Horizon 城市地平线 离散化+线段树

    [BZOJ1645][Usaco2007 Open]City Horizon 城市地平线 Description Farmer John has taken his cows on a trip to ...

  7. 【bzoj4636】蒟蒻的数列 离散化+线段树

    原文地址:http://www.cnblogs.com/GXZlegend/p/6801379.html 题目描述 蒟蒻DCrusher不仅喜欢玩扑克,还喜欢研究数列 题目描述 DCrusher有一个 ...

  8. Mayor's posters (离散化线段树+对lazy的理解)

    题目 题意: n(n<=10000) 个人依次贴海报,给出每张海报所贴的范围 li,ri(1<=li<=ri<=10000000) .求出最后还能看见多少张海报. 思路: 由于 ...

  9. 干物妹小埋 (离散化 + 线段树 + DP)

    链接:https://ac.nowcoder.com/acm/contest/992/B来源:牛客网 题目描述 在之前很火的一个动漫<干物妹小埋>中,大家对小埋打游戏喝可乐的印象十分的深刻 ...

  10. poj/OpenJ_Bailian - 2528 离散化+线段树

    传送门:http://bailian.openjudge.cn/practice/2528?lang=en_US //http://poj.org/problem?id=2528 题意: 给你n长海报 ...

随机推荐

  1. Codeforces Round #575 (Div. 3) E. Connected Component on a Chessboard

    传送门 题意: 给你一个黑白相间的1e9*1e9的棋盘,你需要从里面找出来由b个黑色的格子和w个白色的格子组成的连通器(就是你找出来的b+w个格子要连接在一起,不需要成环).问你可不可以找出来,如果可 ...

  2. Codeforces Round #651 (Div. 2) B. GCD Compression (构造)

    题意:有一个长度为\(2n\)的数组,删去两个元素,用剩下的元素每两两相加构造一个新数组,使得新数组所有元素的\(gcd\ne 1\).输出相加时两个数在原数组的位置. 题解:我们按照新数组所有元素均 ...

  3. Codeforces Round #658 (Div. 2) C1. Prefix Flip (Easy Version) (构造)

    题意:给你两个长度为\(n\)的01串\(s\)和\(t\),可以选择\(s\)的前几位,取反然后反转,保证\(s\)总能通过不超过\(3n\)的操作得到\(t\),输出变换总数,和每次变换的位置. ...

  4. MySQL菜鸟实录(一):MySQL服务安装实战

    CentOS 7 基本信息 系统版本: CentOS 7.3 64bit 系统配置: 4vCPUs | 8GB 磁盘空间: [root@ecs-ce5a-0001 ~]# df -h Filesyst ...

  5. C#枚举(一)使用总结以及扩展类分享

    0.介绍 枚举是一组命名常量,其基础类型为任意整型. 如果没有显式声明基础类型, 则为Int32 在实际开发过程中,枚举的使用可以让代码更加清晰且优雅. 最近在对枚举的使用进行了一些总结与整理,也发现 ...

  6. word2vector代码实践

    引子 在上次的 <word2vector论文笔记>中大致介绍了两种词向量训练方法的原理及优劣,这篇咱们以skip-gram算法为例来代码实践一把. 当前教程参考:A Word2Vec Ke ...

  7. C++ new delete malloc free

    title: C++ new delete malloc free date: 2020-03-10 categories: c++ tags: 语法 C++的new delete malloc fr ...

  8. Ubuntu下跑通py-faster-rcnn、详解demo运作流程

    在不同的服务器不同的机器上做过很多次实验,分别遇到各种不一样的错误并且跑通Py-Faster-RCNN,因此,在这里做一个流程的汇总: 一.下载文件: 首先,文件的下载可以有两种途径: 1.需要在官网 ...

  9. Commons Collections2分析

    0x01.POC分析 //创建一个CtClass对象的容器 ClassPool classPool=ClassPool.getDefault(); //添加AbstractTranslet的搜索路径 ...

  10. windows 10 remote desktop

    windows 10 remote desktop https://support.microsoft.com/en-us/help/4028379/windows-10-how-to-use-rem ...