天气预测(CNN)
import torch
import torch.nn as nn
import torch.utils.data as Data
import numpy as np
import pymysql
import datetime
import csv
import time EPOCH = 100
BATCH_SIZE = 50 class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.con1 = nn.Sequential(
nn.Conv1d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.MaxPool1d(kernel_size=1),
nn.ReLU(),
)
self.con2 = nn.Sequential(
nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.MaxPool1d(kernel_size=1),
nn.ReLU(),
)
self.fc = nn.Sequential(
# 线性分类器
nn.Linear(128*6*1, 128), # 修改大小后要重新计算
nn.ReLU(),
nn.Linear(128, 6),
# nn.Softmax(dim=1),
)
self.mls = nn.MSELoss()
self.opt = torch.optim.Adam(params=self.parameters(), lr=1e-3)
self.start = datetime.datetime.now() def forward(self, inputs):
out = self.con1(inputs)
out = self.con2(out)
out = out.view(out.size(0), -1) # 展开成一维
out = self.fc(out)
# out = F.log_softmax(out, dim=1)
return out def train(self, x, y):
out = self.forward(x)
loss = self.mls(out, y)
print('loss: ', loss)
self.opt.zero_grad()
loss.backward()
self.opt.step() def test(self, x):
out = self.forward(x)
return out def get_data(self):
with open('aaa.csv', 'r') as f:
results = csv.reader(f)
results = [row for row in results]
results = results[1:1500]
inputs = []
labels = []
for result in results:
# 手动独热编码
one_hot = [0 for i in range(6)]
index = int(result[6])-1
one_hot[index] = 1
# labels.append(label)
# one_hot = []
# label = result[6]
# for i in range(6):
# if str(i) == label:
# one_hot.append(1)
# else:
# one_hot.append(0)
labels.append(one_hot)
input = result[:6]
input = [float(x) for x in input]
# label = [float(y) for y in label]
inputs.append(input)
# print(labels) # [[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1],
time.sleep(10)
inputs = np.array(inputs)
labels = np.array(labels)
inputs = torch.from_numpy(inputs).float()
inputs = torch.unsqueeze(inputs, 1) labels = torch.from_numpy(labels).float()
return inputs, labels def get_test_data(self):
with open('aaa.csv', 'r') as f:
results = csv.reader(f)
results = [row for row in results]
results = results[1500: 1817]
inputs = []
labels = []
for result in results:
label = [result[6]]
input = result[:6]
input = [float(x) for x in input]
label = [float(y) for y in label]
inputs.append(input)
labels.append(label)
inputs = np.array(inputs)
# labels = np.array(labels)
inputs = torch.from_numpy(inputs).float()
inputs = torch.unsqueeze(inputs, 1)
labels = np.array(labels)
labels = torch.from_numpy(labels).float()
return inputs, labels if __name__ == '__main__':
# 训练数据
# net = MyNet()
# x_data, y_data = net.get_data()
# torch_dataset = Data.TensorDataset(x_data, y_data)
# loader = Data.DataLoader(
# dataset=torch_dataset,
# batch_size=BATCH_SIZE,
# shuffle=True,
# num_workers=2,
# )
# for epoch in range(EPOCH):
# for step, (batch_x, batch_y) in enumerate(loader):
# print(step)
# # print('batch_x={}; batch_y={}'.format(batch_x, batch_y))
# net.train(batch_x, batch_y)
# # 保存模型
# torch.save(net, 'net.pkl') # 测试数据
net = MyNet()
net.get_test_data()
# 加载模型
net = torch.load('net.pkl')
x_data, y_data = net.get_test_data()
torch_dataset = Data.TensorDataset(x_data, y_data)
loader = Data.DataLoader(
dataset=torch_dataset,
batch_size=100,
shuffle=False,
num_workers=1,
)
num_success = 0
num_sum = 317
for step, (batch_x, batch_y) in enumerate(loader):
# print(step)
output = net.test(batch_x)
# output = output.detach().numpy()
y = batch_y.detach().numpy()
for index, i in enumerate(output):
i = i.detach().numpy()
i = i.tolist()
j = i.index(max(i))
print('输出为{}标签为{}'.format(j+1, y[index][0]))
loss = j+1-y[index][0]
if loss == 0.0:
num_success += 1
print('正确率为{}'.format(num_success/num_sum))
天气预测(CNN)的更多相关文章
- 【SVM】kaggle之澳大利亚天气预测
项目目标 由于大气运动极为复杂,影响天气的因素较多,而人们认识大气本身运动的能力极为有限,因此天气预报水平较低,预报员在预报实践中,每次预报的过程都极为复杂,需要综合分析,并预报各气象要素,比如温度. ...
- 模式识别之bayes---bayes 简单天气预测实现实例
Bayes Classifier 分类 在模式识别的实际应用中,贝叶斯方法绝非就是post正比于prior*likelihood这个公式这么简单,一般而言我们都会用正态分布拟合likelihood来实 ...
- 卷积神经网络CNN全面解析
卷积神经网络(CNN)概述 从多层感知器(MLP)说起 感知器 多层感知器 输入层-隐层 隐层-输出层 Back Propagation 存在的问题 从MLP到CNN CNN的前世今生 CNN的预测过 ...
- Domoticz 中添加彩云天气
前言 用过一段时间的彩云天气 APP,最吸引我的地方是精确到局部区域的天气预测,虽然准确度并不算高,但是对于预测下雨还是不错的选择.在 Domoticz 中添加彩云天气的数据,利用的是彩云天气提供的 ...
- python 基础例子 双色球 查询天气 查询电话
# 随机生成双色球import random# 随机数 1-16之间# r = random.randint(1,16)# print(r)phone_numbers_str = "匪警[1 ...
- 【转载】Deep Learning(深度学习)学习笔记整理
http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫 ...
- Deep Learning速成教程
引言 深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支.从快速发展到实际应用,短短几年时间里, ...
- Deep Learning(深度学习)学习系列
目录: 一.概述 二.背景 三.人脑视觉机理 四.关于特征 4.1.特征表示的粒度 4.2.初级(浅层)特征表示 4.3.结构性特征表示 4.4 ...
- 深度学习概述教程--Deep Learning Overview
引言 深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支.从快速发展到实际应用,短短几年时间里, ...
随机推荐
- Android Picasso最详细的使用指南
Picasso 是Square 公司开源的Android 端的图片加载和缓存框架.Square 真是一家良心公司啊,为我们Android开发者贡献了很多优秀的开源项目有木有!像什么Rerefoit . ...
- 如何解决夜神模拟器连不上adb的问题
要搞一个安卓的项目.由于电脑系统是年前刚刚重装的,系统里啥都没有,于是临时安装了一下android studio 2.2,然后又装了一个夜神模拟器.工程打开后,编译通过了,于是打开夜神模拟器,想要通过 ...
- 中文乱码之《字符编码:ASCII,Unicode 和 UTF-8》
参考文献:字符编码笔记:ASCII,Unicode 和 UTF-8 一.ASCII 码 我们知道,计算机内部,所有信息最终都是一个二进制值.每一个二进制位(bit)有0和1两种状态,因此八个二进制位就 ...
- 浅析Springboot自动配置
首先我们先来看springboot的主程序类,主程序类中使用@SpringBootApplication注解来标记说明这是一个springboot应用,查看该注解源码如下图: 图中的@EnableAu ...
- vue.js的手脚架vue-cli项目搭建的步骤
手脚架是什么? 众所周知,现在的前端项目发展得越渐越大,我们前端程序员要从0开始去搭建一套完整的项目很费时,所以这时候前端工程的手脚架就出现了. 我用得vue-cli也是其中之一,还有其他的我也说不清 ...
- Ubuntu下面MySQL的参数文件my.cnf浅析
前几天刚接手一个MySQL数据,操作系统为Ubuntu 16.04.5 LTS, 数据库版本为5.7.23-0ubuntu0.16.04.1(APT方式安装的MySQL).这个操作系统下的MySQL ...
- vue(1)——node.js安装使用,利用npm安装vue
node node简介 node.js也是用js开发的语言,而且是一门服务端语言,更有大神利用node写了一个操作系统出来——NodeOS node能干什么 自带下载工具: 对于我们开发前端项目,no ...
- 利用ZYNQ SOC快速打开算法验证通路(4)——AXI DMA使用解析及环路测试
一.AXI DMA介绍 本篇博文讲述AXI DMA的一些使用总结,硬件IP子系统搭建与SDK C代码封装参考米联客ZYNQ教程.若想让ZYNQ的PS与PL两部分高速数据传输,需要利用PS的HP(高性能 ...
- 系统功能调用Windows操作系统原理实验
一.实验目的 1.熟悉操作系统的系统功能调用. 2.掌握用C语言实现系统功能调用的方法和步骤. 3.掌握利用10H号功能调用(BIOS的显示I/O功能调用)来实现对屏幕的操作与控制. 二.实验内容 1 ...
- spark-2.4.0-hadoop2.7-简单操作
1. 说明 本文基于:spark-2.4.0-hadoop2.7-高可用(HA)安装部署 2. 启动Spark Shell 在任意一台有spark的机器上执行 # --master spark://m ...