(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$\bex n\pi+\cfrac{\pi}{2}-\cfrac{1}{n\pi} <x_n<n\pi+\cfrac{\pi}{2}. \eex$$

证明: 设 $f(x)=\sin x-x\cos x$, 则 $$\bex f'(x)=x\sin x\sedd{\ba{ll} >0,&x\in I_{2n},\\ <0,&x\in I_{2n+1}, \ea} \eex$$ 其中 $I_n=(n\pi,(n+1)\pi)$. 又 $$\beex \bea f(0)&=0,\\ f(2n\pi)&=-2n\pi<0\quad(n\geq 1),\\ f((2n+1)\pi)&=(2n+1)\pi>0, \eea \eeex$$ 我们知 $f(x)=0$ 在 $(0,+\infty)$ 内的第 $n$ 个解 $x_n\in I_n$. 再注意到 $$\beex \bea &\quad f\sex{2n\pi+\cfrac{\pi}{2}-\cfrac{1}{2n\pi}}\\ &=\cos\cfrac{1}{2n\pi} -\sex{2n\pi+\cfrac{\pi}{2}-\cfrac{1}{2n\pi}}\sin\cfrac{1}{2n\pi}\\ &=\sex{2n\pi+\cfrac{\pi}{2}-\cfrac{1}{2n\pi}} \cos\cfrac{1}{2n\pi}\cdot\sex{ \cfrac{1}{2n\pi+\cfrac{\pi}{2}-\cfrac{1}{2n\pi}} -\tan\cfrac{1}{2n\pi} }\\ &<\sex{2n\pi+\cfrac{\pi}{2}-\cfrac{1}{2n\pi}} \cos\cfrac{1}{2n\pi}\cdot\sex{ \cfrac{1}{2n\pi+\cfrac{\pi}{2}-\cfrac{1}{2n\pi}} -\cfrac{1}{2n\pi}}\\ &<0,\\ f\sex{2n\pi+\cfrac{\pi}{2}}&=1>0, \eea \eeex$$ 我们有 $$\bex x_{2n}\in \sex{2n\pi+\cfrac{\pi}{2}-\cfrac{1}{2n\pi},2n\pi+\cfrac{\pi}{2}}. \eex$$ 同理, 由 $$\beex \bea &\quad f\sex{(2n+1)\pi+\cfrac{\pi}{2}-\cfrac{1}{(2n+1)\pi}}\\ &=-\cos\cfrac{1}{(2n+1)\pi} +\sez{(2n+1)\pi+\cfrac{\pi}{2}-\cfrac{1}{(2n+1)\pi}}\sin\cfrac{1}{(2n+1)\pi}\\ &=-\sez{(2n+1)\pi+\cfrac{\pi}{2}-\cfrac{1}{(2n+1)\pi}} \cos\cfrac{1}{(2n+1)\pi}\\ &\quad\cdot \sez{\cfrac{1}{(2n+1)\pi+\cfrac{\pi}{2}-\cfrac{1}{(2n+1)\pi}}-\tan\cfrac{1}{(2n+1)\pi}}\\ &>0,\\ &\quad f\sex{(2n+1)\pi+\cfrac{\pi}{2}}\\ &=-1<0 \eea \eeex$$ 我们知 $$\bex x_{2n+1}\in \sex{ (2n+1)\pi+\cfrac{\pi}{2}-\cfrac{1}{(2n+1)\pi}, (2n+1)\pi+\cfrac{\pi}{2} }. \eex$$

[再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)的更多相关文章

  1. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  2. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  3. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  4. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  5. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  6. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  7. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  8. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  9. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. 英语进阶系列-A05-英语升级练习三

    古诗背诵 要求:认真背诵和朗读,然后翻译成现代文,并绘制图像描述图中的意向,时间限制到10 minutes.另外,从中找出英文单词,并记录. 例如:慈母 = kind mother,手 = hand, ...

  2. 【Linux基础】查看硬件信息-系统

    1.查看计算机名 hostname 2.查看内核/操作系统/CPU信息 uname -a   4.查看操作系统版本(Linux) head -n 2 /etc/issue Red Hat Enterp ...

  3. Spark-RDD之Partition源码分析

    概要 Spark RDD主要由Dependency.Partition.Partitioner组成,Partition是其中之一.一份待处理的原始数据会被按照相应的逻辑(例如jdbc和hdfs的spl ...

  4. WiFi广告强推的基本技术原理和一些相关问题

    WiFi推原理(转) 本文地址:http://jb.tongxinmao.com/Article/Detail/id/412 WiFi广告强推的基本技术原理和一些相关问题 WiFi广告推送原理就是利用 ...

  5. 使用BigQuery分析GitHub上的C#代码

    一年多以前,Google 在GitHub中提供了BigQuery用于查询的GitHub上的开源代码(open source code on GitHub available for querying) ...

  6. java基础-开发工具IDEA

    常用快捷键 查找 查找:Ctrl + F Find In Path: Ctrl + F + Shift (比普通查找多了一个shift) Search EveryWhere : 双击Shift 视图 ...

  7. 软工+C(10): 团队项目[NABCD] - 对话式编辑

    上一篇:助教指南,持续更新... 下一篇:从命令行开始逐步培养编程能力(Java) 动机(Motivation) Eating your own dog food, also called dogfo ...

  8. Django(一) 安装使用基础

    大纲 安装Django 1.创建Django工程 2.创建Django app 3.写一个简单的登录注册相应页面 4.获取用户请求信息并处理 5.前后端交互 6.Django 请求 生命周期  跳转到 ...

  9. 其它综合-企业级CentOS 7.6 操作系统的安装

    企业级CentOS 7.6版本安装过程 1. 环境: 使用的虚拟机软件是VMware,版本为 12 .(网上一搜一大推,在此不再演示.) 使用的ISO镜像为CentOS7.6.(自己也可以在网上搜镜像 ...

  10. python之路5-函数

    定义:函数是指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名即可 特性: 减少重复代码 使程序变的可扩展 使程序变得易维护 def hello(): print(& ...