import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
import matplotlib.pyplot as mp def get_data_zs(inputfile):
data = pd.read_excel(inputfile, index_col='Id', encoding='gb18030')
data_zs = 1.0 * (data - data.mean()) / data.std()
return data, data_zs def model_data_zs(data, k, b):
model = KMeans(n_clusters=k, n_jobs=4, max_iter=b)
model.fit(data_zs) # 标准化数据及其类别
r = pd.concat(
[data_zs, pd.Series(model.labels_, index=data.index)], axis=1)
# print(r.head())
# 每个样本对应的类别
r.columns = list(data.columns) + [u'聚类类别'] # 重命名表头
return model, r, k def make_norm(model, k):
norm = []
for i in range(k):
norm_tmp = r[['R', 'F', 'M']][
r[u'聚类类别'] == i] - model.cluster_centers_[i]
norm_tmp = norm_tmp.apply(np.linalg.norm, axis=1) # 求出绝对距离
norm.append(norm_tmp / norm_tmp.median()) # 求相对距离并添加
norm = pd.concat(norm)
return norm def draw_discrete_point(threshold):
mp.rcParams['font.sans-serif'] = ['SimHei']
mp.rcParams['axes.unicode_minus'] = False
norm[norm <= threshold].plot(style='go') # 正常点 discrete_points = norm[norm > threshold] # 离散点阈值
discrete_points.plot(style='rs')
# print(discrete_points) for i in range(len(discrete_points)): # 离群点做标记
id = discrete_points.index[i]
n = discrete_points.iloc[i]
mp.annotate('(%s,%0.2f)' % (id, n), xy=(id, n), xytext=(id, n))
mp.xlabel(r'编号')
mp.ylabel(r'相对距离')
mp.show() if __name__ == '__main__':
inputfile = 'data/consumption_data.xls'
threshold = 2 # 离散点阈值
k = 3 # 聚类类别
b = 500 # 聚类最大循环次数
data, data_zs = get_data_zs(inputfile)
model, r, k = model_data_zs(data, k, b)
norm = make_norm(model, k)
draw_discrete_point(threshold)
print('All Done')

显示结果:

python 离群点检测的更多相关文章

  1. 30行Python代码实现人脸检测

    参考OpenCV自带的例子,30行Python代码实现人脸检测,不得不说,Python这个语言的优势太明显了,几乎把所有复杂的细节都屏蔽了,虽然效率较差,不过在调用OpenCV的模块时,因为模块都是C ...

  2. 离群点检测与序列数据异常检测以及异常检测大杀器-iForest

    1. 异常检测简介 异常检测,它的任务是发现与大部分其他对象不同的对象,我们称为异常对象.异常检测算法已经广泛应用于电信.互联网和信用卡的诈骗检测.贷款审批.电子商务.网络入侵和天气预报等领域.这些异 ...

  3. 深度学习 + OpenCV,Python实现实时视频目标检测

    使用 OpenCV 和 Python 对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能. 在本文中我们将学习如何扩展原有的目标检测项 ...

  4. 【python+opencv】直线检测+圆检测

     Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进 ...

  5. C#下实现的K-Means优化[1]-「离群点检测」

    资源下载 #本文PDF版下载 C#下实现的K-Means优化[1]-「离群点检测」 前言 在上一篇博文中,我和大家分享了「C # 下实现的多维基础K-MEANS聚类」的[C#下实现的基础K-MEANS ...

  6. Envoy:离群点检测 outlier detection

    outlier detection 在异常检测领域中,常常需要决定新观察的点是否属于与现有观察点相同的分布(则它称为inlier),或者被认为是不同的(称为outlier).离群是异常的数据,但是不一 ...

  7. 解读ICDE'22论文:基于鲁棒和可解释自编码器的无监督时间序列离群点检测算法

    摘要:本文提出了两个用于无监督的具备可解释性和鲁棒性时间序列离群点检测的自动编码器框架. 本文分享自华为云社区<解读ICDE'22论文:基于鲁棒和可解释自编码器的无监督时间序列离群点检测算法&g ...

  8. 异常点/离群点检测算法——LOF

    http://blog.csdn.net/wangyibo0201/article/details/51705966 在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异 ...

  9. Python QQ群

    微信公众号:Python中文社区 Python初级技术交流QQ群:152745094Python高级技术交流QQ群:273186166Python网络爬虫组QQ群:206241755PythonWeb ...

随机推荐

  1. 从零开始学习Java多线程(二)

    前面已经简单介绍进程和线程,为后续学习做铺垫.本文讨论多线程传参,Java多线程异常处理机制. 1. 多线程的参数传递 在传统开发过程中,我们习惯在调用函数时,将所需的参数传入其中,通过函数内部逻辑处 ...

  2. Java程序设计第2次作业

  3. RS485转USB插电脑上通讯不上

    在确定没有其他问题时,基本可以确定是干扰问题,换个24V电源试试,不要用原来的线 485接口确定,好坏通过两个相反对接,发送信息,两边一致,就可以

  4. vue-实例生命周期钩子(不太明白)

    每个 Vue 应用都是通过用 Vue 函数创建一个新的 Vue 实例开始的: var vm = new Vue({ // 选项}) 每个 Vue 实例在被创建时都要经过一系列的初始化过程——例如,需要 ...

  5. centos升级openssl方法及步骤

    1.下载要升级到的openssl包https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/portable/openssh-7.4p1.tar.gz 2.升级opens ...

  6. 数据库 ACID

    ACID是指一个事务本质上有四个特点: Atomicity:原子性 Consistency:一致性 Isolation:隔离性 Durablilty:耐久性 原子性 原子性是指事务是一个不可分割的工作 ...

  7. css--颜色值

    首先,#000000格式的颜色被成为十六进制颜色码: 6位数分为三组,每两位数一组,依次是红.黄.蓝颜色的强度: #000000可以缩写为#000:黑色 其他类推

  8. css--样式表的引入方法

    html引用css方法如下1.直接在div中使用css样式(内链)2.html中使用style自带式(嵌入)3.使用@import引用外部CSS文件(外部引入)4.使用 link引用外部CSS文件 推 ...

  9. django中的Q查询

    转载于:https://mozillazg.com/2015/11/django-the-power-of-q-objects-and-how-to-use-q-object.html 原文写的很详细 ...

  10. 查看python内部模块命令,内置函数,查看python已经安装的模块命令

    查看python内部模块命令,内置函数,查看python已经安装的模块命令 可以用dir(modules) 或者用 pip list或者用 help('modules') 或者用 python -m  ...