Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$
在 [Berselli, Luigi C.; Córdoba, Diego. On the regularity of the solutions to the 3D Navier-Stokes equations: a remark on the role of the helicity. C. R. Math. Acad. Sci. Paris 347 (2009), no. 11-12, 613--618] 中, 作者证明了如果
$$|u(x+y,t)\cdot \om(x,t)|\leq c_1|y||u(x+y,t)||\om(x,t),\ |y|\leq \del,$$
则解光滑.
Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$的更多相关文章
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$
在 [Chae, Dongho. On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equ ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 2: $u\times \om\cdot \n\times \om$
在 [Lee, Jihoon. Notes on the geometric regularity criterion of 3D Navier-Stokes system. J. Math. Phy ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 3: $u\times \f{\om}{|\om|}\cdot \f{\vLm^\be u}{|\vLm^\be u|}$
在 [Chae, Dongho; Lee, Jihoon. On the geometric regularity conditions for the 3D Navier-Stokes equati ...
- Regularity criteria for NSE 5: $u_3,\om_3$
In [Zhang, Zujin. Serrin-type regularity criterion for the Navier-Stokes equations involving one vel ...
- Cross Product
Cross Product These are two vectors: They can be multiplied using the "Cross Product" (als ...
- Regularity criteria for NSE 6: $u_3,\p_3u_1,\p_3u_2$
In [Zujin Zhang, Jinlu Li, Zheng-an Yao, A remark on the global regularity criterion for the 3D Navi ...
- A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$
In [Zhang, Zujin; Yao, Zheng-an. 3D axisymmetric MHD system with regularity in the swirl component o ...
- Regularity criteria for NSE 4: $\p_3u$
In [Zhang, Zujin. An improved regularity criterion for the Navier–Stokes equations in terms of one d ...
- 向量 dot cross product 点积叉积 几何意义
向量 dot cross product 点积叉积 几何意义 有向量 a b 点积 a * b = |a| * |b| * cosθ 几何意义: 1. a * b == 0,则 a ⊥ b 2. a ...
随机推荐
- 【任务】信息检索.MOOC学习
[博客导航] [信息检索导航] 任务 18年12月4日开始,快速浏览,学习中国大学MOOC平台上黄如花老师的<信息检索>课程. 关键动力 0.搜索是最基础的能力,需要系统学习并应用. 1. ...
- 【笔记】基于Python的数字图像处理
[博客导航] [Python相关] 前言 基于Python的数字图像处理,离不开相关处理的第三方库函数.搜索网络资源,列出如下资源链接. Python图像处理库到底用哪家 python计算机视觉编程— ...
- logback.xml的使用,将日志异步保存到数据库中
想要把日志异步保存到数据库中,首先需要创建一个数据库,然后创建三张固定的表: https://github.com/xiaorenwu-dashijie/logback.git <?xml ve ...
- addq
<template> <el-row id="AddRoom"> <el-col :xs="0" :sm="2" ...
- 倒计时js
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- (十一)Updating Documents
In addition to being able to index and replace documents, we can also update documents. Note though ...
- matlab读取cvs文件的几种方法
matlab读取CVS文件的几种方法: 1,实用csvread()函数 csvread()函数有三种使用方法: 1.M = csvread('filename')2.M = csvread('fi ...
- 私有云方案——利用阿里云云解析实现DDNS
各位都是程序员,工作中是不是遇到个类似情况.在家里研究的一些开源代码或写的一些demo或试验代码,在工作中正好需要参考一下,但是在家里的电脑上. 虽然这些都可以用云 ...
- centos系统java后台运行(xshll关掉不至于jar程序结束)
这样执行,就可以后台运行java程序 nohup java -Dfile.encoding=UTF-8 -jar xxx.jar & 后台内容在该目录下nohup .out文件内,netst ...
- hMailServer 邮件服务器搭建
HMailServer是一个运行于微软Windows系统.基于GPL授权.免费的电子邮件系统:支持常见的电子邮件协议SMTP.POP3.IMAP:可以很容易地与许多现有的网络邮件系统集成和二次开发:具 ...