Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$
在 [Berselli, Luigi C.; Córdoba, Diego. On the regularity of the solutions to the 3D Navier-Stokes equations: a remark on the role of the helicity. C. R. Math. Acad. Sci. Paris 347 (2009), no. 11-12, 613--618] 中, 作者证明了如果
$$|u(x+y,t)\cdot \om(x,t)|\leq c_1|y||u(x+y,t)||\om(x,t),\ |y|\leq \del,$$
则解光滑.
Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$的更多相关文章
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$
在 [Chae, Dongho. On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equ ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 2: $u\times \om\cdot \n\times \om$
在 [Lee, Jihoon. Notes on the geometric regularity criterion of 3D Navier-Stokes system. J. Math. Phy ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 3: $u\times \f{\om}{|\om|}\cdot \f{\vLm^\be u}{|\vLm^\be u|}$
在 [Chae, Dongho; Lee, Jihoon. On the geometric regularity conditions for the 3D Navier-Stokes equati ...
- Regularity criteria for NSE 5: $u_3,\om_3$
In [Zhang, Zujin. Serrin-type regularity criterion for the Navier-Stokes equations involving one vel ...
- Cross Product
Cross Product These are two vectors: They can be multiplied using the "Cross Product" (als ...
- Regularity criteria for NSE 6: $u_3,\p_3u_1,\p_3u_2$
In [Zujin Zhang, Jinlu Li, Zheng-an Yao, A remark on the global regularity criterion for the 3D Navi ...
- A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$
In [Zhang, Zujin; Yao, Zheng-an. 3D axisymmetric MHD system with regularity in the swirl component o ...
- Regularity criteria for NSE 4: $\p_3u$
In [Zhang, Zujin. An improved regularity criterion for the Navier–Stokes equations in terms of one d ...
- 向量 dot cross product 点积叉积 几何意义
向量 dot cross product 点积叉积 几何意义 有向量 a b 点积 a * b = |a| * |b| * cosθ 几何意义: 1. a * b == 0,则 a ⊥ b 2. a ...
随机推荐
- DB2批量插入性能对比
import ibm_db import random import time first_names = '赵钱孙李周吴郑王冯陈褚卫蒋沈韩杨朱秦尤许何吕施张孔曹严华金魏' \ '陶姜戚谢邹喻柏水窦章 ...
- 高性能队列——Disruptor
背景 Disruptor是英国外汇交易公司LMAX开发的一个高性能队列,研发的初衷是解决内存队列的延迟问题(在性能测试中发现竟然与I/O操作处于同样的数量级).基于Disruptor开发的系统单线程能 ...
- Loj #2321. 「清华集训 2017」无限之环
Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋 ...
- Eclipse中的快捷键
Ctrl+1:快捷修复(数字 1 不是字母 l) 将鼠标悬停到出错区域,按 Ctrl+1,出现快捷修复的菜单, 按上下方向键选择一种修复方式即可. 也可以将光标移动到出错区域,按 F2 + Enter ...
- 1-STM32物联网开发WIFI(ESP8266)+GPRS(Air202)系统方案安全篇(来看一下怎么样监听网络数据,监听电脑上位机软件的数据)
首先安装网络监听软件 运行这个软件 这个软件安装到电脑上,默认是监听咱电脑上的网络通信 咱们先监听电脑的软件的网络通信数据,然后再说怎么监听Wi-Fi和APP的软件的网络通信数据 咱就监听咱基础篇的 ...
- 如何在Jupyter里以不同的运行模式使用Pyspark
假设你的环境已经安装好了以下东西,如何详细的安装它们不在本文的讨论范围之内 具体的可疑参考三分钟搞定jupyter和pyspark整合 anaconda2 findspark pyspark 这里多说 ...
- Spring Security Oauth2 的配置
使用oauth2保护你的应用,可以分为简易的分为三个步骤 配置资源服务器 配置认证服务器 配置spring security 前两点是oauth2的主体内容,但前面我已经描述过了,spring sec ...
- Java 200+ 面试题补充 ThreadLocal 模块
让我们每天都有进步,老王带你打造最全的 Java 面试清单,认真把一件事做到极致. 本文是前文<Java 最常见的 200+ 面试题>的第一个补充模块. 1.ThreadLocal 是什么 ...
- Asp.Net Core SignalR 与微信小程序交互笔记
什么是Asp.Net Core SignalR Asp.Net Core SignalR 是微软开发的一套基于Asp.Net Core的与Web进行实时交互的类库,它使我们的应用能够实时的把数据推送给 ...
- TypeError: 'Item' object has no attribute '__getitem__'
Error Msg: Traceback (most recent call last): File "start.py", line 8, in <module> E ...