Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special Judge


The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.

The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.

Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:

fi,1+fi,2+...+fi,N = f1,i+f2,i+...+fN,i

Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.

Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

Input

The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.

Output

On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.

Sample Input

2

4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2

4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3

Sample Input

NO

YES
1
2
3
2
1
1

大意:

一个没有源点汇点的图,每条边有最小和最大流量,流在图中循环。求是否存在符合要求(每条边的流量在最小和最大限制之间)的流,输出方案,spj。

题解:

将问题转化为有源点汇点的图

设超级源点S,超级汇点T

将一条流量边  a->b   [max ,  min]  (a到b,最大流量max,最小流量min)拆为三条边:

S->b  min

a->T  min

a->b max-min

个人理解,对于这一条边,跑最大流的时候需要满足从b流出的流量为min,到a的流量为min。

如果跑完最大流后满流,则存在方案,因为从S的出边流量和到T的流量相等,都等于sigma(min)

如果满流,则最小流量条件能够满足。

/*
Welcome Hacking
Wish You High Rating
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<string>
using namespace std;
int read(){
int xx=,ff=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')ff=-;ch=getchar();}
while(ch>=''&&ch<=''){xx=(xx<<)+(xx<<)+ch-'';ch=getchar();}
return xx*ff;
}
inline int mymin(int xx,int yy)
{if(xx<yy)return xx;return yy;}
const int maxn=;
int N,M,T,t1,t2,t3,t4,sum,ans;
int ss,tt,mp[][];
int lin[maxn],len;
struct edge{
int y,next,flow;
}e[];
inline void insert(int xx,int yy,int ff){
e[++len].next=lin[xx];
lin[xx]=len;
e[len].y=yy;
e[len].flow=ff;
}
inline void ins(int xx,int yy,int ff)
{insert(xx,yy,ff),insert(yy,xx,);}
int q[maxn],head,tail,level[maxn];
bool makelevel(){
memset(level,-,sizeof(level));
head=tail=;
q[head]=ss;
level[ss]=;
for(;head<=tail;head++){
for(int i=lin[q[head]];i;i=e[i].next)
if(level[e[i].y]==-&&e[i].flow){
level[e[i].y]=level[q[head]]+;
q[++tail]=e[i].y;
}
}
return level[tt]!=-;
}
int max_flow(int x,int flow){
if(x==tt)
return flow;
int d,maxflow=;
for(int i=lin[x];i&&maxflow<flow;i=e[i].next)
if(level[e[i].y]==level[x]+&&e[i].flow){
d=max_flow(e[i].y,mymin(e[i].flow,flow-maxflow));
if(d){
maxflow+=d;
e[i].flow-=d;
if(i&)
e[i+].flow+=d;
else
e[i-].flow+=d;
}
}
if(!maxflow)
level[x]=-;
return maxflow;
}
void dinic(){
ans=;
while(makelevel()){
int d=;
while(d){
d=max_flow(ss,<<);
ans+=d;
}
}
if(ans==sum){
printf("YES\n");
for(int i=;i<=M;i++)
printf("%d\n",e[mp[i][]].flow+mp[i][]);
}
else
printf("NO\n\n");
}
int main(){
//freopen("in","r",stdin);
//freopen("out","w",stdout);
T=read();
while(T--){
N=read(),M=read();
ss=N+,tt=ss+;
memset(lin,,sizeof(lin));len=;sum=;
for(int i=;i<=M;i++){
t1=read(),t2=read(),t3=read(),t4=read();
ins(t1,t2,t4-t3);
mp[i][]=len;mp[i][]=t3;
ins(ss,t2,t3);
ins(t1,tt,t3);
sum+=t3;
}
dinic();
}
return ;
}

ZOJ 2314 无源汇可行流(输出方案)的更多相关文章

  1. ZOJ 2314 Reactor Cooling | 无源汇可行流

    题目: 无源汇可行流例题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题解: 证明什么的就算了,下面给出一种建图方式 ...

  2. ZOJ 1314 Reactor Cooling | 上下界无源汇可行流

    ZOJ 1314 Reactor Cooling | 上下界无源汇可行流 题意 有一个网络,每条边有流量的上界和下界,求一种方案,让里面的流可以循环往复地流动起来. 题解 上下界无源汇可行流的模型: ...

  3. 算法复习——无源汇可行流(zoj2314)

    题目: The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nucl ...

  4. sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...

  5. SGU 194 无源无汇可行流求解

    题意:n个点,m条边,每条边有容量限制 l--c,每个点满足容量平衡(流入等于流出),求可行解 无源无汇可行流问题,建立以一个超级源点和超级汇点,由于原来最大流问题时候,流量下界其实为0, 所以要转化 ...

  6. ZOJ 3229 Shoot the Bullet | 有源汇可行流

    题目: 射命丸文要给幻想乡的居民照相,共照n天m个人,每天射命丸文照相数不多于d个,且一个人n天一共被拍的照片不能少于g个,且每天可照的人有限制,且这些人今天照的相片必须在[l,r]以内,求是否有可行 ...

  7. BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)

    题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...

  8. 【zoj2314】Reactor Cooling 有上下界可行流

    题目描述 The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuc ...

  9. [BZOJ3698]XWW的难题解题报告|上下界网络流|有源汇最大流

    XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A,满足XW ...

随机推荐

  1. JS高级——面向对象方式解决歌曲管理问题

    需要注意的问题: 1.其他模块若是使用构造函数MP3创建对象,唯一不同的就是他们传入的音乐库是不一样的,所以构造函数中存在一个songList属性,其他一样的就被添加到了构造函数的原型对象之中 2.原 ...

  2. html5——伸缩布局

    基本概念 1.主轴:Flex容器的主轴主要用来配置Flex项目,默认是水平方向 2.侧轴:与主轴垂直的轴称作侧轴,默认是垂直方向的 3.方向:默认主轴从左向右,侧轴默认从上到下 4.主轴和侧轴并不是固 ...

  3. java 操作clob

    之前在学校的时候做的都是练习,小儿科,遇到的情况完全都在自己的设想范围内.最近老是遇到字段溢出的情况,但是varchar2好像最长也只有4000个字符.所以不得不另辟蹊径,就找上了clob字段. pa ...

  4. [问题记录]-技术学习-RocketMQ-全球集群部署问题

    一:问题场景 公司在部署全球的RocketMQ的时候,遇到亚洲区的服务器往欧洲区的RocketMQ发送消息失败的情况. 总共有出现两个问题 1:No Topic Route Info org.apac ...

  5. C# 执行sql语句批量更新

    int x = db.Database.ExecuteSqlCommand(string.Format("update T_Pension SET UnitType = '{0}' WHER ...

  6. day01-编程与计算机组成原理

    什么是编程 编程语言:是人与计算机沟通交流的介质,通过标准化的规则传递信息 编程:就是为了使计算机能够理解人的意图,通过编程语言写出一个个文件,这堆文件完成相应的目的 编程的目的:用计算机取代人完成工 ...

  7. std::vector遍历

    std::vector是我在标准库中实用最频繁的容器.总结一下在遍历和创建vector时需要注意的一些地方. 在不考虑线程安全问题的前提下,在C++11中有五种遍历方式. 方式一 for (size_ ...

  8. Day 13 进程和线程

    进程和线程 今天我们使用的计算机早已进入多CPU或多核时代,而我们使用的操作系统都是支持“多任务”的操作系统,这使得我们可以同时运行多个程序,也可以将一个程序分解为若干个相对独立的子任务,让多个子任务 ...

  9. 30.3 FCL中的混合构造

     30.3.2 Monitor类和同步块 internal sealed class Transaction { private readonly object _lock = new object( ...

  10. C# Thu Mar 1 00:00:00 UTC+0800 2012 如何转换为2012-03-01

    string s = "Thu Mar 1 00:00:00 UTC+0800 2012"; DateTime dt = DateTime.ParseExact(s, " ...