OpenCV实现灰度直方图和直方图拉伸
原文链接:http://blog.csdn.net/xiaowei_cqu/article/details/7600666
如有疑问或者版权问题,请移步原作者或者告知本人。
灰度直方图是数字图像中最简单且有用的工具,这一篇主要总结OpenCV中直方图CvHistogram的结构和应用。
灰度直方图的定义

OpenCV中的直方图CvHistogram
typedef struct CvHistogram
{
int type;
CvArr* bins; //存放每个灰度级数目的数组指针
float thresh[CV_MAX_DIM][2]; //均匀直方图
float** thresh2; //非均匀直方图
CvMatND mat; //直方图数组的内部数据结构
}
CvHistogram;
这个结构看起来简单(比IplImage*元素少多了。。。)其实并不太好理解。
创建直方图 cvCreateHist()
CvHistogram* cvCreateHist(
int dims, //直方图维数
int* sizes,//直翻图维数尺寸
int type, //直方图的表示格式
float** ranges=NULL, //图中方块范围的数组
int uniform=1 //归一化标识
);
size数组的长度为dims,每个数表示分配给对应维数的bin的个数。如dims=3,则size中用[s1,s2,s3]分别指定每维bin的个数。
type有两种:CV_HIST_ARRAY 意味着直方图数据表示为多维密集数组 CvMatND; CV_HIST_TREE 意味着直方图数据表示为多维稀疏数组 CvSparseMat。
void cvCalcHist(
IplImage** image, //输入图像(也可用CvMat**)
CvHistogram* hist, //直方图指针
int accumulate=0, //累计标识。如果设置,则直方图在开始时不被清零。
const CvArr* mask=NULL //操作 mask, 确定输入图像的哪个象素被计数
);
要注意的是这个函数用来计算一张(或多张)单通道图像的直方图,如果要计算多通道,则用这个函数分别计算图像每个单通道。
实践:一维直方图
int main( )
{
IplImage * src= cvLoadImage("baboon.jpg");
IplImage* gray_plane = cvCreateImage(cvGetSize(src),8,1);
cvCvtColor(src,gray_plane,CV_BGR2GRAY); int hist_size = 256; //直方图尺寸
int hist_height = 256;
float range[] = {0,255}; //灰度级的范围
float* ranges[]={range};
//创建一维直方图,统计图像在[0 255]像素的均匀分布
CvHistogram* gray_hist = cvCreateHist(1,&hist_size,CV_HIST_ARRAY,ranges,1);
//计算灰度图像的一维直方图
cvCalcHist(&gray_plane,gray_hist,0,0);
//归一化直方图
cvNormalizeHist(gray_hist,1.0); int scale = 2;
//创建一张一维直方图的“图”,横坐标为灰度级,纵坐标为像素个数(*scale)
IplImage* hist_image = cvCreateImage(cvSize(hist_size*scale,hist_height),8,3);
cvZero(hist_image);
//统计直方图中的最大直方块
float max_value = 0;
cvGetMinMaxHistValue(gray_hist, 0,&max_value,0,0); //分别将每个直方块的值绘制到图中
for(int i=0;i<hist_size;i++)
{
float bin_val = cvQueryHistValue_1D(gray_hist,i); //像素i的概率
int intensity = cvRound(bin_val*hist_height/max_value); //要绘制的高度
cvRectangle(hist_image,
cvPoint(i*scale,hist_height-1),
cvPoint((i+1)*scale - 1, hist_height - intensity),
CV_RGB(255,255,255));
}
cvNamedWindow( "GraySource", 1 );
cvShowImage("GraySource",gray_plane);
cvNamedWindow( "H-S Histogram", 1 );
cvShowImage( "H-S Histogram", hist_image ); cvWaitKey(0);
}
试验结果:


实践:二维直方图
IplImage* r_plane = cvCreateImage( cvGetSize(src), 8, 1 );
IplImage* g_plane = cvCreateImage( cvGetSize(src), 8, 1 );
IplImage* b_plane = cvCreateImage( cvGetSize(src), 8, 1 );
IplImage* planes[] = { r_plane, g_plane };
//将HSV图像分离到不同的通道中
cvCvtPixToPlane( src, b_plane, g_plane, r_plane, 0 ); // 生成二维直方图数据结构
int r_bins =256, b_bins = 256;
CvHistogram* hist;
{
int hist_size[] = { r_bins, b_bins };
float r_ranges[] = { 0, 255 }; // hue is [0,180]
float b_ranges[] = { 0, 255 };
float* ranges[] = { r_ranges,b_ranges };
hist = cvCreateHist( 2, hist_size, CV_HIST_ARRAY, ranges, 1);
}
//计算一张或多张单通道图像image(s) 的直方图
cvCalcHist( planes, hist, 0, 0 );
刚才的图我们是对应每个横坐标绘制纵坐标的直方块,二维的图需要绘制每个点:
for( int h = 0; h < r_bins; h++ ) {
for( int s = 0; s < b_bins; s++ ) {
float bin_val = cvQueryHistValue_2D( hist, h, s ); //查询直方块的值
int intensity = cvRound( bin_val * 255 / max_value );
cvRectangle( hist_img,
cvPoint( h*scale, s*scale ),
cvPoint( (h+1)*scale - 1, (s+1)*scale - 1),
CV_RGB(intensity,intensity,intensity),
CV_FILLED);
}
}
最终生成二维直方图:

转载请注明出处:http://blog.csdn.net/xiaowei_cqu/article/details/7600666
实验代码下载:http://download.csdn.net/detail/xiaowei_cqu/4328881
Mat格式的参考这里:
http://blog.csdn.net/xiaowei_cqu/article/details/8833799
OpenCV实现灰度直方图和直方图拉伸的更多相关文章
- OpenCV手工实现灰度及RGB直方图
手工实现灰度及RGB直方图 !库 1. 灰度图像直方图 算法 1. 图片灰度化: 2. 遍历Mat,统计各灰度级的像素个数: 3. 根据opencv画点线函数,绘制坐标轴及像素分布图 源码(编译环境: ...
- opencv——图像的灰度处理(线性变换/拉伸/直方图/均衡化)
实验内容及实验原理: 1.灰度的线性变换 灰度的线性变换就是将图像中所有的点的灰度按照线性灰度变换函数进行变换.该线性灰度变换函数是一个一维线性函数:f(x)=a*x+b 其中参数a为线性函数的斜率, ...
- OpenCV分通道显示图片,灰度,融合,直方图,彩色直方图
代码有参考跟整合:没有一一列出出处 // split_rgb.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <io ...
- opencv绘制灰度直方图
代码之一: #include <cv.h> #include <highgui.h> #pragma comment( lib, "cv.lib" ) #p ...
- OpenCV图像增强算法实现(直方图均衡化、拉普拉斯、Log、Gamma)
http://blog.csdn.net/dcrmg/article/details/53677739 1. 基于直方图均衡化的图像增强 直方图均衡化是通过调整图像的灰阶分布,使得在0~255灰阶 ...
- 灰度图的直方图均衡化(Histogram Equalization)原理与 Python 实现
原理 直方图均衡化是一种通过使用图像直方图,调整对比度的图像处理方法:通过对图像的强度(intensity)进行某种非线性变换,使得变换后的图像直方图为近似均匀分布,从而,达到提高图像对比度和增强图片 ...
- 【OpenCV】图像增强---灰度变换、直方图均衡化
图像增强的目的:改善图像的视觉效果或使图像更适合于人或机器的分析处理.通过图像增强,可以减少图像噪声,提高目标与背景的对比度,也可以增强或抑制图像中的某些细节. ------------------ ...
- OpenCV笔记(4)(直方图、傅里叶变换、高低通滤波)
一.直方图 用于统计图片中各像素值: # 画一个图像各通道的直方图 def draw_hist(img): color = ('b', 'g', 'r') for i, col in enumerat ...
- (原)Opencv中直方图均衡和图像动态范围拉伸的代码
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5102032.html 参考网址: http://blog.csdn.net/abcjennifer/a ...
随机推荐
- 用Twebbrowser做可控编辑器与MSHTML(插入表格)
在插入表格问题上出现与结果想象不一样的问题.看代码 <table border="1" cellpadding="0" width="100%& ...
- 用循环链表实现Josephus问题
Josephus问题:设有n个人围坐在一个圆桌周围,现从第s个人开始报数,数到第m的人出列,然后从出列的下一个人重新开始报数,数到第m的人又出列.如此反复直到所有的人全部出列为止. 思路:构建一个没有 ...
- HDU 3666
此题不难,不等式很空易就列出来了,只是要把它转化成减法形式..卡在这了... 其实取一个log对数就好了...要记住这个技巧.用基于dfs的spfa.. #include<iostream> ...
- 飘逸的python - 实现一个极简的优先队列
一个队列至少满足2个方法,put和get. 借助最小堆来实现. 这里按"值越大优先级越高"的顺序. #coding=utf-8 from heapq import heappush ...
- MongoDB改动、删除文档的域属性实例
MongoDB改动.删除文档的域属性实例 在站点的开发中,可能最初的设计不合理.或者后期业务的变更,会造成文档结构会有些无用的属性.须要去删除或改动.因为MongoDB 是无 Schema 的,不像关 ...
- mysql数据类型和Java数据类型对比一览
MySQL Types to Java Types for ResultSet.getObject() MySQL Type Name Return value ofGetColumnClassNam ...
- 设置用root用户telnet到linux系统
默认情况下,ROOT用户不能以telnet方式连接Linux操作系统,而且也是不安全的.但从技术上来讲,是可以实现的. #mv /etc/securetty /etc/securetty.bak 保存 ...
- Android之——常见Bug及其解决方式
转载请注明出处:http://blog.csdn.net/l1028386804/article/details/46942139 1.android.view.WindowManager$BadTo ...
- SQL Source Control for teams
You'll use SQL Source Control differently depending on which development model you're using: 不同的模式有不 ...
- class--类③
类的构造函数 类的构造函数是类的一种特殊的成员函数,它会在每次创建类的新对象时执行. 构造函数的名称与类的名称是完全相同的,并且不会返回任何类型,也不会返回 void.构造函数可用于为某些成员变量设置 ...